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Abstract

The transition to post-quantum cryptography (PQC) poses an unprecedented challenge for Bitcoin and Ethereum, as it involves
implementing a defensive downgrade that imposes immediate, severe costs with no tangible benefits. While quantum computers
capable of breaking secp256k] require approximately 2,100-2,400 logical qubits — with algorithmic improvements continuously
reducing this threshold — current systems achieve only ~100 logical qubits. This 10—15-year threat horizon collides with the reality
that convincing decentralised communities to accept 50% capacity loss and 2-3X fee increases could take 10—15 years, if achievable
at all. Current testnet implementations on permissioned systems show 52—57% throughput degradation. Critically, this data comes
from fundamentally different architectures than permissionless networks, which will likely expetience 60—70% throughput loss due
to global verification requirements, heterogeneous hardware, and compounding propagation delays. This methodological limitation
— extrapolating from permissioned to permissionless systems — represents a critical infrastructure failure that introduces massive
uncertainty into migration planning. Beyond transient impacts, PQC creates permanent state bloat, with quantum-resistant accounts
requiring 59 times more storage, thereby accelerating centralisation. This paper presents a comprehensive framework acknowledging
these harsh realities. While we propose specific BIP/EIP implementations and optimisation strategies that might achieve 50-60%
capacity retention, we recognise that historical precedent suggests our 5—7-year timeline is wildly optimistic. Unlike beneficial upgrades
like SegWit (which took <2 years despite offering improvements), PQC migration is a purely defensive measure imposing only costs.
Blockchain communities face a statk choice: accept immediate degradation to prepare for quantum threats or risk emergency migration

under crisis conditions.

Keywords: Post-guantum cryptography, Blockchain security; Bitcoin; Etherenm,; Defensive downgrade; Quantum resistance; Governance challenges;
State bloat

JEL Classifications: C63; E42; G32; 1.56;, O33

1. Introduction qubit requires thousands to tens of thousands of physical
qubits for error correction [3, 4, 5], placing the threat 10-15
years away based on current capabilities of ~100 logical qubits

1.1 Context and Motivation [6, 7).

The development of cryptographically relevant quantum
computers poses a long-term but inevitable threat to
blockchain security. Current research indicates that breaking
secp250k1 requires approximately 2,100—2,400 logical qubits,
with recent optimisations by Hiner et al. (2020) [1] reducing
eatlier estimates from 2,330 [2] to 2,124 qubits. Importantly,
this threshold is not static; ongoing improvements in quantum
algorithms continue to reduce resource requirements,
potentially accelerating the threat timeline beyond what can be
achieved through hardware advancements alone. Each logical

However, this technical timeline collides with an equally
daunting governance challenge. Unlike every previous
blockchain upgrade that offered tangible benefits, post-
quantum cryptography (PQC) migration is a defensive
downgrade that imposes severe, immediate costs (50%
capacity loss, 2-3X fees, increased node requirements) with
zero immediate benefits. Historical evidence from contentious
upgrades suggests that achieving consensus for such a purely
costly change may take 10-15 years, if achievable at all.
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Critical Methodological Limitation: All current performance
data comes from permissioned blockchain systems with
fundamentally different architectures than Bitcoin or Ethereum.
The lack of comprehensive benchmarking on scaled,
permissionless testnets represents not merely a research gap but a
critical infrastructure failure. Strategic decisions worth trillions of
dollars are being contemplated based on data from systems with
known, trusted validators rather than the heterogeneous, globally
distributed networks that characterise public blockchains.

This paper bridges the gap between technical necessity and
political reality by presenting:

1. Empirical performance data from permissioned
systems showing 52-57% throughput loss, with
analysis of why permissionless networks will likely
expetience 60—70% degradation

2. State bloat analysis revealing 59X permanent storage
increase per quantum-resistant account

3. Governance reality, acknowledging that defensive
downgrades face fundamentally different political
dynamics

4. Crypto-agility framework
flexibility to avoid lock-in risks

5. Honest timeline assessment presenting 5—7 years as
optimistic, 10-15 years as realistic

enabling  algorithm

1.2 Quantifying the Multidimensional Threat

Recent analyses [4, 5, 6] demonstrate that quantum vulnerability
vaties dramatically by blockchain architecture.

Bitcoin (UTXO Model)

e 25% of the total supply (46 million BTC) is
immediately vulnerable [4, 7]

e Pay-to-Public-Key (P2PK) addresses
mining operations [43]

e Reused P2PKH/P2WPKH addresses with exposed
public keys

e  Mitigation: One-time use addresses provide natural
protection

from eartly

Ethereum (Account Model)

®  65% of circulating ETH quantum-exposed [7]
e Account model encourages persistent address reuse

(44]

e Includes all ERC-20 tokens and NFTs in exposed
accounts

e Risk: Entire account balance vulnerable after the first
transaction

Solana and Ed25519-based Chains

e 100% wvulnerability — public keys directly used as
addresses [§]

e No hashing protection layer exists
e Winternitz Vault provides opt-in protection [9]
e  Critical: Entire network value exposed from genesis

The Dual-Front Threat Evolution

Beyond  hardware advancement, quantum  algorithm
improvements continuously reduce resource requirements:

e 2017: 2,330 logical qubits required [1]

e 2020: 2,124 logical qubits required [2]

e Average reduction: ~9% over 3 years (~3% annually)

e Future: Continued optimisation is likely at a similar or
accelerating pace

This dual advancement illustrated in Figure 1, which shows how
the threat approaches from both growing hardware capability
and shrinking algorithmic requitements, means the threat
approaches both directions simultaneously. Historical
algorithmic improvements suggest a 20-30% reduction in the
required number of qubits over the next decade is plausible,
potentially shortening safe migration windows by 2-3 years.

Figure 1 Realistic Quantum Computing Threat Timeline
with Algorithmic Uncertainty

Year: 2025 2030 2035 2040 2045 2050
| | | | | |
Logical
Qubits: ~100  ~500 ~1500 ~3000 ~5000 ~10000
T l T
Current  Algorithm  Hardware reaches
State  improvements  2,100-2,400
may lower
threshold

Migration Reality vs. Threat Evolution:
|mememenemnnnnnn | Optimistic: 5—7 years

(assumes cooperation)
|EEEEEEEEEEEEEEEEEEEEEnEnnEE | Realisticc 10-15
years (governance friction)

Threat Zone Begins
(2035-2040)

Critical Insight: Migration timeline may EXCEED threat
timeline

- Technical development: 2-3 years

- Consensus building: 5-10 years (for a COSTLY change)

- Deployment: 2-3 years

- User migration: 2—3 years

Total: 11-19 years realistic range

Transit Attack Vector

Stewart et al. [10] identify real-time attacks during transaction
broadcast:

The JBBA | Volume 9 | Issuel | 2026

Published Open Access under the CC-BY 4.0 Licence 2

@



") BIBIA

e Attacker monitors mempool for new transactions

e Extracts newly revealed public key from pending
transaction

e Must complete quantum attack within block
confirmation time (10 min Bitcoin, 12 sec Ethereum)

e Mitigation: Commit-reveal schemes, time-locked
transactions, or private mempools [28]

1.3 Research Contributions
This paper makes the following novel contributions:

1. First analysis acknowledging PQC as a “defensive
downgrade” with unique governance challenges

2. State bloat quantification showing 59X permanent
storage increase impact

3. Realistic timeline assessment based on “pain vs.
gain” governance dynamics

4. Crypto-agility framework for avoiding algorithmic
lock-in

5. Critical analysis of the extrapolation problem from
permissioned to permissionless systems

1.4 Paper Organisation

Section 2 reviews NIST algorithms with implementation
complexity and performance limitations. Section 3 presents a
hybrid architecture with state bloat analysis. Section 4 provides
a stratified capacity analysis acknowledging permissionless
extrapolation issues. Section 5 addresses the “defensive
downgrade” governance challenge with a corrected historical
analysis. Section 6 proposes crypto-agility solutions. Section 7
concludes with a sobering assessment of likely outcomes.

2. Methodology

2.1 Post-Quantum Cryptographic Algorithms and Current
Status

2.1.1 NIST-Standardised Post-Quantum Signatures

The NIST Post-Quantum Cryptography standardisation
process concluded in 2024 with three primary signature
schemes [11]:

CRYSTALS-Dilithium (ML-DSA)

e  Module lattice-based construction using Fiat-Shamir
with aborts [12]

e  NIST’s primary recommendation for general use [11]

e  Straightforward implementation without floating-
point arithmetic

e  Three security levels: ML-DSA-44, ML-DSA-65, ML-
DSA-87

FALCON (FN-DSA)

e NTRU lattice-based  using
Vaikuntanathan framework [13]

Gentry—Peikert—

e Smallest signatures among lattice schemes

e  Complex implementation requiring floating-point and
Gaussian sampling [18§]

e  Performance varies 6—8X depending on hardware FPU
availability [12]

e Two main variants: FN-DSA-512, FN-DSA-1024

SPHINCS+ (SLH-DSA)

e  Hash-based, stateless construction [14]

e Most conservative security assumptions (only requires
hash function security) [34]

e Large signatures and slow operations

e Multiple parameter sets balancing size vs. speed [31]

2.2 Current Implementation Status (2025) — Reality Check

Table 1 summarizes the actual implementation status across
major blockchain projects, revealing the gap between claims and
reality.

Table 1 Actual Implementation Status across Blockchain
Projects

Project Claimed Actual Performanc | Relevanc
Status Reality e Data eto
Migration
Hyperledg | “Productio | Testnet —52-57% Limited-
er Fabric n ready” experiments | throughput permission
only [15, 23] * ed only
Quranium | “Live New PQC- | N/A — built | Not a
[19] mainnet” native chain | from scratch | migration
example
Abelian “Mainnet New chain, | N/A — no | Different
[20] ready” no legacy compatibility | problem
burden space
Ethereum | “Active Proposals Unknown — | Years from
[21, 27, 41] | research” and not deploymen
discussions implemented | t
Bitcoin “Commun | Early Unknown — | No
[22] ity debate” | proposal no timeline
stage consensus established
Polkadot “Parachain | Research No empirical | Proposals
[25] testing” roadmaps data not
only implement
ations

*Note: Performance degradation figures are based on empirical
studies of PQC integration in distributed systems, consistent
with broader literature findings.

Critical Observation: No major existing blockchain has
successfully completed a PQC migration in production. All
performance data comes from permissioned systems with
fundamentally different architectures.
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2.3 Performance Impact — Permissioned Data and
Permissionless Extrapolation

2.3.1 Extrapolation Problem — A Critical Infrastructure
Failure

The reliance on permissioned system data for planning
permissionless network migrations represents not just a
methodological limitation but a systemic failure of
infrastructure  preparedness. This introduces massive
uncertainty into any cost-benefit analysis and significantly
increases the risk of discovering true migration costs only after
the process is irreversibly underway.

Conservative permissionless impact estimate: 60-70%
throughput loss (worse than measured 52—-57%)

Research Gap: No comprehensive benchmarking exists for
PQC on public testnets that mimic mainnet scale and
heterogeneity. This critical knowledge gap must be addressed
urgently before irreversible decisions are made.

2.3 Algorithm Comparison with Implementation Reality

Table 3 provides a comprehensive comparison of algorithm
metrics and implementation challenges.

Table 3 Comprehensive Algorithm Metrics and
2.3.2 Measured Reality on Permissioned Systems Implementation Challenges (Corrected)
Table 2 presents measured performance degradation across key Algorith | Securi | Publi | Signatu | Verify | Implementat
metrics in permissioned systems. Based on Hypetledger Fabric m ty c te (cycles) | ion Reality
studies [15, 16, 17, 23, 24]: Level | Key | (bytes)
(byte
Table 2 Measured Performance Degradation ECDSA 128-bit 33) 71 ~80.000 Mature,
(Permissioned Systems) (current) | classica universal
1 support [43, 44]
Metric Cutrent With Degradati | Confide ML- NIST 1,312 | 2,420 ~327,00 | Moderate
(ECDSA) PQC on Factor nce DSA-44 | Level 2 0 complexity,
(Measure [12] recommended
d) _ ML- NIST | 1,952 | 3,300 ~522,00 | Good
Throughput 100% 43-48% —52-57% ngh DSA-65 Level 3 0 SCCUl’ity/ size
bascline [15] (>90%) (12] balance
Latency 1.0X baseline | 1.8-2.2X +80— High M- NIST 5590 | 4627 269600 | Maximum
0, 0, > > >
120% [16] | (>90%) DSA-87 | Level 5 0 security, larger
Storage/year | 100 GB 135-150 +35-50% High [12]
GB [17] (>90%) FN- NIST | 897 666 ~353,00 | Complex,
Bandwidth 10 Mbps 20-30 2-3% 23] | Medium DSA- Level 1 0% side-channel
Mbps (70%) 512 [13] tisks [18]
CPU usage 100% 165-185% | +65-85% High FN- NIST 1,793 | 1,280 ~700,00 | Very complex,
baseline 24] (>90%) DSA- Level 5 0% few
1024 [13] implementatio
2.3.3 Critical Limitation — Permissionless Networks Likely s

Much Worse

The above data represents an absolute best-case scenatio.
Permissioned systems, such as Hyperledger Fabric, rely on a
small, known set of high-performance validators. In
permissionless networks like Bitcoin and Ethereum:

e Every full node must verify every
(thousands of validators vs. dozens)

signature

e Global propagation requires all nodes to complete
verification before relaying

¢ Network performance is determined by the aggregate
of all nodes, not the average

e Compounding delays as each hop in propagation
adds PQC verification time

e Heterogeneous hardware ranging from high-end
servers to Raspberry Pi’s

*Performance varies 6—8X depending on hardware FPU
availability.

2.5 Critical Implementation Considerations

FALCON - The Performance Trap

e Attractive: Smallest signatures (666 bytes vs. 3,309 for
ML-DSA-65)

e Dangerous: Floating-point arithmetic creates non-
deterministic behaviour [13]

e Reality: 6-8X performance variation based on
hardware [12]

e Risk: Teams choose FALCON for size, implement
insecurely, and create vulnerabilities [18]

¢ Recommendation: Default to Dilithium unless deep
cryptographic expertise is available
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The Impossible Choice
This creates a no-win scenario for protocol developers:

e Choose FALCON: Risk catastrophic implementation
vulnerabilities and side-channel attacks

¢ Choose Dilithium: Guarantee permanent network
degradation from 47X larger signatures

e Reality: No “magic bullet” algorithm exists that solves
both problems

3. Results

3.1 Hybrid Signature Architecture with State Bloat
Analysis

3.1.1 Design Principles and Trade-offs
Our hybrid signature approach acknowledges four realities:

1. Backward Compatibility: Existing ECDSA
infrastructure must continue [43, 44|

2. Forward Security: Quantum resistance for new
transactions [10]

3. Graceful Degradation: System survives if one
algorithm fails [20]

4. Economic Reality: Accepting severe, unavoidable

performance penalties [15, 16, 17]
3.2 Technical Specification
3.2.1 Hybrid Signature Structure

HybridSignature = {
version: uint§,
crypto-agility
ecdsa_sig: ECDSASignature, // 71 bytes (t,s,v)
pqc_sig: PQCSignature,  // 666-4,627 bytes
pqc_type: enum { // Algotithm identifier
MI._DSA_44 = 0x10,
ML_DSA_65 = 0xI11,
MIL_DSA_87 = 0x12,
FN_DSA_512 = 0x20,
FN_DSA_1024 = 0x21,
FUTURE_ALG = OxFF
placeholder

¥
commitment: SHA256Hash

}

// Algorithm version for

// Crypto-agility

// 32 bytes binding [32]

Total sizes:

- With ML-DSA-44: 2,531 bytes (35.6x ECDSA)
- With ML-DSA-65: 3,420 bytes (48.2x ECDSA)
- With ML-DSA-87: 4,738 bytes (66.7x ECDSA)
- With FN-DSA-512: 777 bytes (10.9x ECDSA)

3.3 Security Analysis

3.3.1 Accurate Security Model [4, 5, 6]
Against Classical Adversary:

e Security = max(ECDSA_security, PQC_security)
e Must break a stronger algorithm
e Result: 128-256 bits depending on the algorithm

Against Quantum Adversary [1, 2]:

e  ECDSA broken by Shot’s algorithm
e Security = PQC_security only
¢ Result: Full dependency on PQC component

Key insight: Hybrid signatures provide insurance against
algorithmic failure, not multiplicative security [26]. They are a
transitional mechanism, not a permanent solution.

3.4 State Bloat: The Overlooked Permanent Cost

Beyond transient transaction and block size impacts, PQC
creates permanent, compounding state growth that the
community has not fully considered.

3.4.1 Bitcoin UTXO Set Impact

Current State

e P2PKH output script: ~25 bytes
e P2WPKH output: ~22 bytes
e DPublic key (when revealed): 33 bytes

Post-PQC State (with ML-DSA-65)

e P2QRH output with ML-DSA-65: ~1,960 bytes
e  DPublic key storage: 1,952 bytes
e Impact: 59.2X permanent increase per output

Cumulative Effect

e  Current UTXO set: ~5 GB

e Post-PQC UTXO set (if fully migrated): ~296 GB
e  Every future node must store this forever

e Cannot be pruned without breaking verification

3.4.2 Ethereum State Impact
Current Account State

e EOA account: 33-byte public key
e  Smart contract account: Variable but typically small

Post-PQC Account State (with ML-DSA-65)

e ML-DSA-65 account: 1,952-byte public key
e Impact: 59.2X permanent increase per account
e Applies to all accounts, tokens, and contracts
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Compounding Growth

e Year 1: +50 GB state growth (eatly adopters)

e Year 2: +150 GB state growth (increasing adoption)
e Year 3: +300 GB state growth (mandatory phase)

e Year 5: +500 GB state growth (full migration)

e  Cumulative: 1+ TB additional permanent state

3.4.3 Long-Term Centralisation Consequences

Node Operator Impact

e  Sync time: Days — Weeks for initial sync

e Storage: 1 TB — 5-10 TB requirement

e Bandwidth: 10X increase during sync

¢ Result: 50-80% of current nodes priced out

Network Effects

e Fewer nodes — Increased centralisation

e Higher barriers to entry — Less resilience

e Geographic concentration — Regulatory risk

e Centralisation spiral: Reduced decentralisation
begets further centralisation

This permanent bloat represents an additional, compounding
cost that makes the centralisation impact even more severe than
transaction throughput analysis suggests. Unlike transaction
data, which can be atrchived, the state must remain accessible
forever.

4. Block Size Economics and Capacity Analysis — Stratified
Reality

4.1 Current Empirical Reality (Permissioned Systems)

Table 4 shows the measured impact of PQC on blockchain
metrics in permissioned environments. Based on Hypetledger
Fabric measurements [15, 16, 17, 23, 24]:

Permissionless Extrapolation (Likely Worse)

e Add global verification overhead: Additional 10-20%
degradation
e Network propagation delays: Each hop adds PQC

verification

e Heterogeneous hardware impact:
become bottlenecks

Slowest nodes

e Conservative permissionless estimate: 30-40%

capacity retention (vs. 40-50% measured)

4.2 Near-Term Achievable (with Existing Technology)

Table 5 outlines near-term achievable optimizations using
existing technology.

Table 5 Optimisation Techniques and Realistic Impact

Technique Description Capacity Status Confide
Gain nce
Batch Verify  multiple | +15-20% Implemente | High
Verification sigs together d (85%)
i26]
Segregated Move PQC to the | +20-25% Proven High
Witness  Style | extension block concept (80%)
29]
Selective Only high-value | +10-15% Easy to | High
Deployment needs PQC implement (90%)
State Merkle proofs for | Storage only Complex Medium
Compression the old state (60%)
Combined All proven | 50-60% Achievable Medium
Realistic techniques retention (65%)
Impact

4.3 Future Research Directions (Speculative — Not Proven)

Table 6 presents speculative technologies that remain in the

research phase,

probabilities.

with associated timelines

and

Success

Table 6 Speculative Technologies — Research Goals Only

Technology | Theoretical Current Timeline Success
. X . Benefit Status Probability
Table 4 Measured Blockchain Metrics with PQC (%)
(Permissioned) PQC 60-80% size | Mathematical | 3-5 years | <30
Signature reduction proposals R&D
Metric Current | With Hybrid Tmpact ‘[z%]gregm’“ only
PQC (Iz;L-DSA- STARK 10% Concept only, | 5-7 years | <20
) . Compression | compression | no prototypes | R&D
Average 250 bytes | 2,800 bytes 11.2X increase [54, 57] possible
Transaction Size [15] Hardware 3-5% faster | Early research | 3—4 years | 50
Transactions per | 4,000 357 —91% capacity Acceleration vetification
MB [16] If All | 70-80% Not a | 7-10 <15
Block Capacity 3,000 268 tx/block —91% Succeed capacity realistic years
tx/block throughput planning
[17] basis
Verification 0.5ms/tx | 2.8 ms/tx 5.6X  slower
Time (24 Figure 2 visualizes the gap between measured performance,
realistic optimization potential, and speculative future
improvements.
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Figure 2 Capacity Retention — Reality vs. Hope

Network Capacity (% of Current)
100% 4 ECDSA Baseline

F breakthroughs succeed)
70-80% [54, 55]

Confidence: <15% (requires multiple breakthroughs)
Realistic with Current Tech

50-60% [24, 25]
Confidence: 60—70%

Permissioned Measurement

40-50% [15, 16, 17]
Conservative Estimate)
30—40%

Permissionless Reali

Worst Case
20-30%

Now Year1 Year3 Year5 Year10

Legend:
Measured/Extrapolated (High confidence >80%)
Achievable with optimisation (Medium confidence 60—70%)

Z Speculative/Requires  breakthroughs (Low confidence
<15%)

5. Deployment Strategy and the “Defensive Downgrade”
Governance Reality

5.1 Fundamental Governance Challenge

Unlike every previous blockchain upgrade, PQC migration
presents a unique challenge: it is a defensive downgrade that
imposes immediate, severe costs with zero tangible benefits.

5.1.1 Historical Upgrades vs. PQC Migration

Table 7 compares PQC migration to historical blockchain
upgrades, highlighting the unprecedented challenge of a purely
defensive downgrade.

Table 7 The “Pain vs. Gain” Asymmetry (Corrected
Timelines)

Upgrade Benefits Costs Time to | Adoption
Offered Imposed | Activation Rate

SegWit +Capacity, Complexity | <2 years* | Slow
[29, 46] +Lightning (years)
Taproot +Privacy, Minimal <2 Moderate
[45] +Smart years**

contracts
PQC NONE —50% Pr? Pr?
Migration | (future risk | capacity,

mitigation) 3X fees

*Proposed Dec 2015, activated Aug 2017 (20 months)
**Proposed Jan 2020, activated Nov 2021 (22 months)

Critical Insight: Even beneficial upgrades faced massive
resistance. SegWit, despite offering clear capacity increases,
triggered the Bitcoin Block Size War that nearly split the
network [29]. A purely costly downgrade faces exponentially
higher resistance.

5.1.2 Why 5-7 Years Reflects Unrealistic Optimism?
The papet’s original 5-7 year timeline assumes
e  Rational, long-term thinking by all stakeholders
e  Willingness to accept immediate pain for distant gain
e Smooth consensus building around costly changes
Historical reality shows
e Communities resist even beneficial changes for years
e Contentious debates over trade-offs last 4+ years
e Defensive measures are perpetually postponed
Realistic timeline assessment
e  Best Case (Crisis Motivation): 5—7 years
e  Probable Case (Human Nature): 10-15 years
e Likely Case (Governance Reality): Stalls indefinitely
until crisis
5.2 Bitcoin Implementation Path — Corrected Timeline

5.2.1 Technical Mechanisms

Table 8 evaluates potential Bitcoin deployment approaches with
realistic political feasibility assessments.

Table 8 Bitcoin Deployment Approaches with Realistic
Timelines

Approach Method Political Realistic
Feasibility Timeline
Soft Fork | P2QRH output | Low (costly | 5-10 years
(BIP-360) | type change)
22]
Hard Fork | Clean Very Low | 10+ years or
implementation | (split risk + | never
Costs)
Extension | Parallel PQC | Medium 7—-12 years
Blocks chain (complexity)
Layer 2 | Lightning  + | High (no L1 | 2-3 years
Only [53] | PQC change) (incomplete)
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5.2.2 Realistic Bitcoin Timeline

Figure 3 visualizes the gap between measured performance,
realistic optimization potential, and speculative future
improvements.

Figure 3 Bitcoin PQC Migration — Realistic Projection

Year 0 2 4 6 8 10 12 14 16

T e e e B
[Specification Development [22]]

[Initial Proposals & Rejection]
[Years of Debate about Costs]
[Crisis Event Needed?]
[Renewed Interest|

[Maybe Activation?]
[Slow Adoption]

Historical Context:

- SegWit: <2 years but WITH benefits, still contentious
- Block Size: 4+ years of war, ended in a chain split

- PQC: Only costs, no benefits = Much harder

Most Likely Outcome: Stalls until a quantum computer is
demonstrated

5.3 Ethereum Implementation — Slightly Better but Still
Grim

5.3.1 Ethereum’s Advantages and Challenges

Table 9 presents Ethereum deployment strategies with gas cost
implications and realistic timelines.

Advantages:

e Stronger governance structure via Ethereum

Foundation [30]
e  History of successtul hard forks [47, 48]
e Account abstraction provides an upgrade path [27]

Challenges:

e  State bloat problem is more severe (account model)
e Gas costs are already contentious
e DecFi ecosystem complexity

Table 9 Ethereum Deployment Strategies with Reality
Check

Strategy Implementation | Gas Cost Realistic
Timeline
AA/ERC- Smart contract | 3-5X% Available but
4337 [27] wallets current expensive
EIP-7701 [41] | Native AA support | 2-3X 3-5 years
current
Protocol New  transaction | 1.5-2X 5-8 years
Change type current
State Replace all keys One-time | 10+ yeats if ever
Migration massive

5.4 Coordination Problem
5.4.1 Stakeholder Incentive Misalignment

Table 10 illustrates the stakeholder incentive misalighment that
makes consensus neatly impossible.

Table 10: Why Consensus Is Neatly Impossible

Stakeholder Incentive Likely Action Result
Miners/Validators | Maintain Resist  capacity | Delay
revenue reduction
Exchanges Avoid costs Wait for others | Delay
to move
Users Low fees Oppose fee | Delay
increases
Developers Technical Endless Delay
perfection optimisation
Nobody Wants Everyone waits Stalemate
immediate
pain

5.4.2 Tragedy of the Commons

¢ Individual rational choice: Wait for others to pay
costs

e Collective result: Nobody acts until it’s too late

e Historical precedent: Y2K required regulatory
forcing [52]

e Blockchain reality: No central authority to force
action

This dynamic creates a profound test of decentralised
governance. The very features that protect these networks from
control by a central authority — the need for rough consensus
among self-interested actors — also render them structurally ill-
equipped to solve long-horizon, high-cost public goods
problems.

5.4.3 Partial Migration Strategies — The Two-Tier Risk
One potential path involves allowing gradual, opt-in migration:

e New accounts use PQC, existing accounts are
grandfathered

e Creates a temporary two-tier security system

e Risk: The Majority may never migrate without a
forcing function

e  Result: Permanent security fragmentation

While politically easier, this approach risks creating a dangerous
illusion of progtress while leaving the bulk of network value
exposed.
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6. Implementation Challenges and Crypto-Agility

6.1 Technical Challenges beyond Performance

6.1.1 Overlooked Complexities

Table 11 identifies ovetlooked implementation challenges

beyond performance metrics.

Table 11 Hidden Implementation Challenges

Challenge Description Impact Mitigation
Key Users need 2+ | UX nightmare Years of wallet
Management | key pairs updates
Recovery Longer seeds | Incompatible Fragmentation
Phrases needed standards
Hardware Limited Many become | Forced
Wallets memory/CPU | obsolete upgrades
Cross-chain Different PQC | Bridge Ecosystem

choices incompatibility | fracture
Smart Gas limits | Many become | Forced rewrites
Contracts exceeded unusable

6.2 Crypto-Agility: The Missing Foundation

Current proposals hard-code specific algorithms (e.g., ML-
DSA-65), creating future risk if these fail. Recent history shows
this risk is real:

e Rainbow: Broken after NIST selection [20]
e SIKE: Broken after years of study

e GeMSS: Attacked successfully

e Lesson: Any specific algorithm may fail

6.2.1 Crypto-Agile Architecture
Phase 1: Enable Algorithm Flexibility

protocol_upgrade {

signature_vetsion: uint8, // Vetsioning system

supported_algorithms: [ // Multiple options
ECDSA, // Keep legacy
MI, DSA_65, // Primary PQC
FN_DSA_512, // Backup PQC
FUTURE_SLOT_1, // Reserved
FUTURE_SLOT 2 // Reserved

I,

selection_mechanism: "per_tx", // User choice
governance_process: "BIP" // How to add/remove

}

Phase 2: Gradual PQC Adoption

Benefits

e Avoids lock-in to potentially broken algorithm
¢  Enables gradual migration

e Reduces governance friction

e Allows competitive algorithm improvement

Critical Limitation of Crypto-Agility

While crypto-agility is technically necessary, it is not a panacea.
It introduces permanent governance complexity:

e Continuous Decision Making: Instead of one
migration, perpetual algorithm management

e New Attack Surface: Political battles over algorithm
selection

e Standards Evolution: Ongoing need to evaluate and
integrate new algorithms

e Trade-off: Exchanges algorithmic risk for governance
risk

This framework trades the catastrophic risk of algorithmic
failure for the chronic challenge of ongoing governance
decisions. While necessary, it does not solve the fundamental
governance problems identified throughout this paper.

6.3 Critical Path Analysis — Realistic Version

6.3.1 Why the Timeline Extends

Figure 2 visualizes the gap between measured performance,

realistic optimization potential, and speculative future
improvements.
Figure 4 Critical Path with Realistic Durations
Task Dependencies (Cannot be Parallelised):
Specification —— Consensus —— Implementation ——
Testing
12mo 60-120mo 24mo 12mo
T
MAIN BOTTLENECK
(Defensive Downgrade)
U
User Migration «——— Activation <——— Deployment <«———
Integration
24—48mo 6mo 12mo 12mo

Realistic Total: 11-19 years (132—-228 months)
Optimistic Total: 5-7 years (60—84 months)

e  Users choose an algorithm per transaction Key Uncertainty: The Consensus phase could extend
. . indefinitely
e  Market determines adoption rate
e TFailed algorithms can be deprecated
e  New algorithms can be added
The JBBA | Volume 9 | Issuel | 2026 Published Open Access under the CC-BY 4.0 Licence 9

@



") BIBIA

6.3.2 Point of No Return — Already Passed?

Table 12 analyzes the collision between realistic migration
timelines and quantum threat arrival.

Table 12 Timeline vs. Threat Analysis

Scenario Migration Threat Outcome
Needs Arrives

Optimistic 5-7 years (start | 2037— Possible

2025) 2040 success
Realistic 10-15 years | 2035— Racing

(start 2025) 2038 against time
With Algo 10-15 years 2033— Already too
Improvements 2035 late
With Crisis Delay Start 2030+ 2035- Chaotic

2038 emergency

Critical Insight: If a realistic timeline (10-15 years) and
algorithmic improvements (threat by 2033-2035) both occur,
the point of no return has already passed.

7. Conclusions and Recommendations — A Sobering
Reality

7.1 Key Findings — Evidence-Based Assessment

1. Quantum Threat Evolution
o Hardware threshold: ~2,100-2,400 logical
qubits [1, 2]
o Algorithmic improvements: Continuously
lowering threshold
o  Current capability: ~100 logical qubits [3]
Time to threat: 10-15 years, possibly less
o Conclusion: Threat approaches from two
directions
2. Performance Impact — Worse than Expected
o Permissioned systems: 52-57% throughput
loss [15, 10]
o Permissionless (conservative estimate): 60—
70% throughput loss
o State bloat: 59X permanent increase
o Node requirements: 5-10X increase over

O

time
o Conclusion: Devastating impact on
decentralisation
3. Governance Reality — The “Defensive

Downgrade” Problem

o Historical upgrades WITH benefits: <2 years

o PQC with ONLY costs: 10-15 years
optimistically

o More likely: Stalls indefinitely until crisis

o Conclusion: Political timeline may exceed
technical timeline

4. Missing Foundations
o No crypto-agility in current proposals
o  State bloat impact overlooked

o  Permissionless performance understudied
o Conclusion: The Problem is worse than
acknowledged

7.2 Honest Recommendations by Stakeholder
7.2.1 For Protocol Developers
Immediate Priorities:

1. Implement crypto-agility first — Avoid algorithmic
lock-in

2. Conduct permissionless testing urgently — Stop
extrapolating from Hyperledger

3. Quantify state bloat — Model long-term impacts

4. Set honest expectations — Acknowledge this is a
defensive downgrade

5. Plan for emergency activation — Crisis will likely
force action

Address Unrealistic Optimism:
- That 57 years is conservative (it reflects unrealistic optimism)
- That optimisations will solve the problem (they will not)

- That governance will be smooth (it will not)

7.2.2 For the Broader Ecosystem

Table 13 provides pragmatic actions for each stakeholder group
based on honest reality assessment.

Table 13 Realistic Action Plan

Stakeholder Honest Pragmatic
Reality Action
Miners/Validators | Will resist until | Plan for
forced emergency
transition
Exchanges Will delay untl | Build crisis
the last moment | response
capability
Users Will  complain | Prepare for 3%+
about costs fees
Investors Value at risk Hedge against
migration failure
Developers Years of difficult | Focus on crypto-
work ahead agility first

7.3 Three Scenarios for the Future
Scenario 1: Miraculous Cooperation (Probability: <10%o)

e Communities accept immediate pain for future gain
e  5-7-year migration succeeds

e Capacity drops by 50%, but security is maintained
e Blockchain survives as a settlement layer
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Scenario 2: Crisis-Driven Response (Probability: ~60%)

e Governance stalemate for 5-10 years
¢ Quantum breakthrough forces emergency action

Rapid 2—-3-year migration under pressure

Major value losses, some chains fail
Scenario 3: Catastrophic Failure (Probability: ~30%)

e  Migration stalls indefinitely
¢ Quantum computer arrives before ready
e  Massive theft triggers market collapse

Blockchain experiment effectively ends

Note: These probabilities are illustrative estimates based on the
analysis presented.

7.4 The Uncomfortable Truth

The blockchain community faces an unprecedented challenge:
voluntarily accepting severe, immediate degradation with no
tangible benefits, based on a threat that remains abstract and
distant. Historical evidence suggests humans and decentralised
communities are pootly equipped for such decisions.

The most likely outcome: We will wait until quantum
computers are demonstrably breaking cryptography elsewhere
(financial systems, government communications) before acting.
This crisis will trigger emergency migrations under extreme
pressure, resulting in significant value loss and potential chain
failures.

The responsible recommendation: Begin implementing
crypto-agility immediately, acknowledge the actual timeline (10—
15 years), and prepare for crisis-driven activation rather than
smooth planned migration.

7.5 Final Assessment

This paper began as an analysis of a technical challenge and
evolved into recognition of governance impossibility. The PQC
migration represents a “defensive downgrade” that violates the
fundamental incentive structures of decentralised systems.
Unlike Y2K [52], there is no central authority to mandate action.

The evidence suggests the following:

e Technical solution: Exists but imposes severe costs

¢ Economic impact: Devastating but survivable

e Governance path: Nearly impossible under normal
conditions

e Most likely trigger: External crisis forcing emergency
action

The stark reality: Blockchain’s greatest strength, decentralised
governance, becomes its greatest weakness when facing a
challenge requiring coordinated sacrifice for distant, abstract
benefits. The PQC migration may ultimately serve as a definitive

test of whether decentralised systems can make hard choices for
long-term survival, or whether they ate doomed to paralysis
until crisis forces chaotic action. Every month of delay increases
the risk while decreasing the available response time. Yet delay
is exactly what human nature and governance dynamics predict.
We are likely observing a predictable governance failure that
everyone recognises, but nobody can prevent.
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