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Abstract 
Automated Market Makers (AMMs) with a conservative function, such as Uniswap, Balancer, Curve and others, are an integral part of 
decentralised finance. This article examines the effect of the exchange fees on the divergence losses of the automated market-making 
systems in public blockchain networks. The study consists of several parts: theoretical background, detailed description of the exchange 
mechanics, the derivation of explicit formulas, the results of modelling using the hyperparameters of pools from the Ethereum network and 
the analysis of the proposed approach using historical data. For the first time, the obtained closed formulas (Uniswap, Balancer) and 
modelling results (Uniswap, Balancer, Curve) indicate the presence of the impermanent gain for liquidity providers in the case of non-zero fees 
when the trading volume does not exceed a certain amount. The results indicate that the proposed methodology significantly affects the 
definition of ‘impermanent loss of a liquidity provider’ widely used in the blockchain community since there can always be a profitable 
range of values. As a practical part of the study, statistics on the share of trades with the effect of impermanent gain in Ethereum pools are 
provided, and the approach for managing the fee rate is considered during this observation. Explicit relationships for mostly used AMMs 
with non-zero trading fees are derived. The article may be useful for both practitioners and researchers in the field of decentralised finance 
seeking a deeper understanding of the dynamics of automated market-making in an ever-changing DeFi environment. 

Keywords: Decentralised Finance, DeFi, Decentralised Exchange, Constant Function Market Makers, AMM, Impermanent Loss, Impermanent Gain, 
Uniswap, Curve 

JEL Classifications: D01, D40, D49 
 

1. Introduction 

The development of blockchain technologies started in 2008 
with the famous Satoshi Nakomoto’s paper [1]. The idea 
behind it was to develop a decentralised and transparent 
ledger capable of recording transactions, which is why this 
technology initially found its primary application in digital 
currency. In the following years, blockchain technologies 
attracted significant attention from the community and 
developers, expanding beyond just digital currencies. The 
evolution of blockchain with the groundbreaking technology 
of smart contracts in Ethereum [2] enabled the 
implementation of complex business logic and applications 
within decentralised networks. One example of such 
innovation is Automated Market Makers (AMMs), which 
utilise mathematical formulas to model markets and provide 
liquidity for various financial assets [3].  

In modern decentralised finance (DeFi), AMMs are crucial, 
serving as intermediaries between liquidity providers and 

ordinary users looking to exchange their tokens. Unlike order 
book trading systems [3], AMMs utilise liquidity pools and 
algorithmic pricing mechanisms to enable users to trade assets 
directly, avoiding a centralised order-matching process. 
Moreover, AMM systems have no spread for buying and 
selling. However, each unit of exchange volume always leads 
to a slight price slippage. In DeFi, trading systems based on 
AMM frequently concentrate way more liquidity than classic 
systems based on order books.  

Over the past few years, research and development in AMMs 
have advanced rapidly, paving the way for numerous areas of 
exploration: optimising swap invariant functions [4], analysing 
impermanent loss and risk management [5, 6], researching 
user strategies [7] and much more. 

This article proposes to examine the mathematical aspects of 
the AMM microeconomics theory of impermanent losses 
incurred by liquidity providers with the influence of exchange 
fees. The analysis of impermanent loss is a critical task. In 
Loesch et al. [8], researchers present a statistical quantitative 
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result that 49.5% of liquidity providers in Uniswap v3 have 
negative returns, indicating a vast field for optimisation of 
AMM operations regardless of the specific invariant. 

In most practical implementations of AMM, the constancy of 
liquidity invariant after a trade is not observed due to 
transaction fees. Studying this phenomenon is an interesting 
challenge. However, it has limited coverage in the existing 
literature. In Xue et al. and Aigner and Dhaliwal [3, 9], the 
impact of varying invariants is ignored, leading to inaccurate 
formulations for calculating impermanent losses. In Angeris et 
al. [10], the case of an increasing invariant is considered; 
however, explicit relationships were not derived, only the 
estimation that is consistent with this study’s findings.  

It is worth noting that among modern types of AMM systems, 
there is an option of the conservative function Uniswap 
v3 with concentrated liquidity [7], where the collected fees do 
not contribute to pool liquidity. Therefore, the formula for 
impermanent losses from Xu et al. [3] is correct. However, in 
this article, we will skip over this scenario and focus on the 
traditional versions of Uniswap [11], Balancer [3] and Curve 
[12], which we will describe in more detail later. The analysis 
of fee structure for invariants with concentrated liquidity is 
also a challenging task subject to future research. 

The relevance of this study is to expand our fundamental 
understanding of how automated market-making systems with 
conservative functions really work. The presented findings 
could be used to optimise the actions of liquidity providers or 
fee adjustments based on market conditions. As the Central 
Bank Digital Currencies (CBDCs) and stablecoins are 
evolving, a detailed analysis of the microeconomic features of 
AMMs, such as the effect of impermanent loss described in 
this article, is highly demanded. 

This work is divided into six parts. The current part provides a 
brief introduction and review of the related work. Section 2 
outlines the primary mathematical concepts of automatic 
market makers. Section 3 presents the theoretical analysis of 
impermanent losses, considering the influence of the trading 
fee parameters and visualisations of results. This part 
mentions exceptional cases of Uniswap, Balancer and Curve 
invariants, and the simplest asymptotic estimation for the 
impermanent gain range is derived. Sections 4 and 5 discuss 
the practical recommendations and constraints of the 
proposed analytical methodology. Lastly, the conclusions of 
the current research are discussed. 

2. Theoretical Background 

In analysing the impermanent losses of liquidity providers 
associated with AMMs, it is crucial to take into account 
dependence on several factors such as liquidity, trading 
volumes and the particular implementation of the exchange 
protocol. This chapter is devoted to the theoretical 
foundations of automated conservative market-making 
systems. 

2.1. Automated Market Makers 

An automated market-making system is a model that utilises a 
fixed mathematical relationship between assets, enabling 
stability and predictability in pricing. Numerous articles [13, 
14] were published to explore the mathematical implications 
of the axiomatic properties of automated market-making 
systems. For the purpose of the current article, we introduce 
the following simplified formalisation. 

Without loss of generality, we assume that the automated 
market-making system operates with two assets, whose 
volumes are denoted by 𝑥 > 0 and 𝑦 > 0. The conservative 
function [3] (otherwise the invariant [10] or trading 
function [15]) is concave, increasing in each argument and 
piecewise differentiable function 𝐼:  𝑅!" → 𝑅!. In practical 
implementation, it is additionally assumed that 𝐼 is a 
homogeneous function. For further unification, it is more 
convenient to move on to considering an implicitly defined 
relationship that describes the dependence of the system 
behaviour, 

𝐹,𝑥, 𝑦, 𝐼(𝑥, 𝑦)0 = 𝐹(𝑥, 𝑦, 𝐾) = 0,																			(1) 

where the liquidity factor 𝐾 is introduced, so that 
homogeneity of the degree 𝑞 of the conservative function is 
observed: 

𝐹(𝑠𝑥, 𝑠𝑦, 𝑠𝐾) = 𝑠#𝐹(𝑥, 𝑦, 𝐾).																				(2)  

Well-known examples of automated market-making systems 
are Uniswap [11], Balancer [3] and Curve [12]. Comparative 
visualisations of exchange invariants are presented in Figure 1. 
Such conservative functions for mentioned AMMs are 
respectively expressed as 

𝐹$(𝑥, 𝑦, 𝐾) = 𝑥𝑦 − 𝐾",																									(3) 

𝐹%(𝑥, 𝑦, 𝐾) = 𝑥&!𝑦&" − 𝐾&!!&" ,																(4) 

𝐹'(𝑥, 𝑦, 𝐾) = 4𝐴(𝑥 + 𝑦) − (4𝐴 − 1)𝐾 −
𝐾(

4𝑥𝑦.					
(5) 

Uniswap (3) is a conservative constant product market 
maker, a generalisation of which is the Balancer’s (4) 
geometric mean market maker [16]. Curve invariant is 
structurally constructed as a hybrid of a constant sum and 
product function. It is cumbersome to express the function 
𝐼'$)*+(𝑥, 𝑦) explicitly (it requires solving a cubic polynomial 
equation); however, the relation for two traded assets in a 
liquidity pool is expressed implicitly in (5), where the 
parameter 𝐴 has the meaning of amplification (or weight) 
coefficient between the constant sum and constant product 
invariants. The introduced functions 𝐹$, 𝐹% and 𝐹' are 
homogeneous of degrees 2, 𝑤, +𝑤- and 1, respectively. 
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Figure 1. Comparison of the considered Automated Market 
Maker’s invariants. 

The considered invariants, due to the uniqueness of 𝑥 and 𝑦 
for a fixed 𝐾, allow to proceed with convex functions 𝑦 =
𝑦(𝑥, 𝐾) and 𝑥 = 𝑥(𝑦, 𝐾), expressing the volume of one asset 
through another. For example, for Uniswap and Balancer, 
such functions are expressed as 

𝑦$(𝑥, 𝐾) =
𝐾"

𝑥 ,																																
(6) 

𝑦%(𝑥, 𝐾) =
𝐾
&!
&"

!.

𝑥
&!
&"

.																												(7) 

The first derivative of 𝑦 = 𝑦(𝑥, 𝐾).	For a fixed liquidity 
parameter, 𝐾 can be written as 

𝑝(𝑥, 𝐾) = −
𝑑𝑦
𝑑𝑥 = −

∂𝐹
∂𝑥
∂𝐹
∂𝑦

,																								(8) 

which, in the literature [3], is called marginal price, because it 
defines the instantaneous price of asset 𝑥 in units of 𝑦 in the 
automated market-making system. At any AMM, a marginal 
price changes with every trade, which is called [3, 17] price 
slippage. 

The function 𝐼(𝑥, 𝑦) (or 𝐹(𝑥, 𝑦, 𝐾)) is meant to be 
conservative, and the traded volume is calculated based on the 
property of its conservation during the trading process. For 
example, the sent volume Δ𝑥 and received volume Δ𝑦 satisfy 
the equation 

𝐹(𝑥!, 𝑦!, 𝐾!) = 𝐹 )𝑥! + 𝛾"𝛥𝑥, 𝑦! −
𝛥𝑦
𝛾#
, 𝐾!.,					(9) 

where 𝛾/ = 1 − 𝜙/ and 𝜙., 𝜙" are fee rates for sent and 
received assets, respectively. 

For example, in the generally accepted open-source 
implementations of the Uniswap and Balancer invariants, 
𝜙. > 0, 𝜙" = 0 are used. However, at Curve the fees are 
different (𝜙. = 0 and 𝜙" > 0). The introduction of two types 
of rates allows for reducting the theoretical analysis to a 
general form, but at the time of publication, the authors are 
not aware of variations of existing automated market makers 
that introduce both 𝜙. ≠ 0 and 𝜙" ≠ 0. 

Visualisation of the mechanics of trading an asset Δ𝑥 for Δ𝑦 
with two-sided constant fee rates is shown in Figure 2. The 
trade occurs from the initial state 𝑂 = (𝑥0, 𝑦0) to the final 
state 𝐸 = (𝑥0 + Δ𝑥, 𝑦0 − Δ𝑦). 

 

Figure 2. AMM exchange mechanics. 

In general, a trade can be divided into two consecutive stages. 
The first one is the movement from point 𝑂 to point 𝑆 
preserving the conservative function (8). Since the liquidity 
parameter 𝐾0 does not change during this stage, then the 
volume of Δ𝑦 can be written in integral form using the 
differential definition of marginal price (7) as 

𝛥𝑦 = 𝛾"M 𝑝(𝑥, 𝐾0)𝑑𝑥.
,#!1$2,

,#
																	(10) 

In the next stage, the earned commissions add up as additional 
asset reserves, which lead to a subsequent increase in liquidity 
from 𝐾0 to 𝐾.. The two described stages occur atomically 
within a single trading transaction [2]. 

In the particular case when 𝛾. ≠ 1 and 𝛾" = 1, the final state 
of the trading process is at point 𝐿. Based on the homogeneity 



 
 
 

The JBBA  |  Volume 8 |  Issue 2  |  2025                                 Published Open Access under the CC-BY 4.0 Licence 

                                                                                                                                               

4 

 

condition (2), we can easily conclude that for the marginal 
price observed 𝑝3 > 𝑝4. In the other case (𝛾. = 1 and 𝛾" ≠
1) 𝑝5 < 𝑝4. The most general case (𝛾. ≠ 1 and 𝛾" ≠ 1) is 
shown in Figure 2 as point 𝐸, for which the ratio of marginal 
prices 𝑝6 and 𝑝4 cannot be unambiguously determined. 

2.2. Impermanent Loss 

In the previous subsection, it was shown how price slippage 
occurs due to the convex properties of the function 𝑦(𝑥, 𝐾). 
Based on this, the concept of impermanent loss (divergence 
loss) [3, 7, 10] was introduced, which describes the losses of 
liquidity providers while external users are trading assets at 
AMMs. As previously noted, many contemporary articles 
overlook the fact that while trading at AMMs with a 
homogeneous conservative function (e.g., Uniswap, 
Balancer, Curve), the liquidity factor 𝐾 increases, which, as 
we will see later, will greatly affect the result. Without taking 
these changes into account, impermanent losses will always be 
positive, which means that for any sent volume Δ𝑥	 > 	0, 
there will be losses in the liquidity pool [3]. 

To illustrate impermanent losses, two liquidity provider 
behaviour strategies are examined. The first strategy involves 
depositing assets following the previously outlined trading 
process. The second strategy entails passively holding the 
initial volumes (𝑥, 𝑦) outside the AMM system, assuming the 
final price resulting from the deposit strategy is observed on 
the market. Thus, the comparison highlights the impact of 
actively investing funds in an AMM versus taking a passive 
approach. For a single trade Δ𝑥	 → Δ𝑦 with respective change 
in the liquidity 𝐾0 → 𝐾. the expressions of the strategies’ 
values 𝑉789: and 𝑉:+;8</= are represented as 

𝑉:+;8</= = 𝑝(𝑥0 + Δ𝑥,𝐾.) ⋅ (𝑥0 + Δ𝑥) + (𝑦0 − Δ𝑦) 

𝑉789: = 𝑝(𝑥0 + Δ𝑥,𝐾.) ⋅ 𝑥0 − 𝑦0 

Next, the absolute and relative impermanent losses are 
expressed, respectively, 

𝐼𝐿> = 𝑉:+;8</= − 𝑉789: = 𝑝(𝑥0 + Δ𝑥,𝐾.) ⋅ Δ𝑥 − Δ𝑦,			(11) 

𝐼𝐿) =
𝑉:+;8</=
𝑉789:

− 1 =
𝑝(𝑥0 + Δ𝑥,𝐾.) ⋅ Δ𝑥 − Δ𝑦
𝑝(𝑥0 + Δ𝑥,𝐾.) ⋅ 𝑥0 + 𝑦0

.						(12) 

Negative values for (11) and (12) are interpreted as 
impermanent losses, while positive ones represent 
impermanent gains. These changes are called ‘impermanent’ 
because if the marginal price 𝑝(𝑥, 𝑘) returns to its initial value 
followed by a sequence of trades within the AMM, the 
changes vanish. Nevertheless, the market does not always 
return to its starting price level; therefore, in many market 
scenarios, it is important to be able to evaluate immediate 
fluctuations. 

3. Impact of Exchange Fee on Impermanent Losses 

Suppose the first asset of volume Δ𝑥 is traded through studied 
AMM. When fees are involved, the invariant changes its value 
from 𝐾0 → 𝐾. after the trade (see Figure 2). Then, the 
absolute impermanent loss (11) can be expressed using (10) as 

𝐼𝐿> = 𝑝(𝑥0 + Δ𝑥,𝐾.)Δ𝑥 − γ"M 𝑝(𝑥, 𝐾0)𝑑𝑥.
,#!?$@,

,#
			(13) 

We utilise the property of the monotonical decreasity of the 
function 𝑝(𝑥, 𝐾) (8) with respect to the argument 𝑥, which 
follows from the convexity and decreasity of 𝑦(𝑥, 𝐾), and 
estimate the value of losses: 

𝐼𝐿> ≤ 𝑝(𝑥0 + Δ𝑥,𝐾.)Δ𝑥 − γ.γ"𝑝(𝑥0 + γ.Δ𝑥, 𝐾0)Δ𝑥, 

𝐼𝐿> ≤ (1 − γ.γ")𝑝(𝑥0 + γ.Δ𝑥, 𝐾0)Δ𝑥, 

from which we get that in the absence of fees (γ.γ" = 1) the 
right-hand side is equal to 0, therefore, for any trade of 
volume Δ𝑥, there will always be positive impermanent losses 
for liquidity providers.  

Next, we find explicit formulas for 𝐼𝐿> and 𝐼𝐿) in special 
cases and provide numerical simulations for considered swap 
invariants. 

3.1. Uniswap 

Let us substitute the explicit formulas (3) and (6) for Uniswap 
invariant into the expression of the absolute impermanent 
losses 𝐼𝐿> (13), we obtain 

𝐼𝐿>$ =
𝐾."

(𝑥0 + Δ𝑥)"
Δ𝑥 − 𝛾" U

𝐾0"

𝑥0
−

𝐾0"

𝑥0 + 𝛾.Δ𝑥
V. 

Considering that the final amount of asset 𝑦 in pool after the 
single trade is 𝑦. = 𝑦0 − γ" W𝑦0 −

,#-#
,#!?$@,

X, the previous 
equation can be simplified as 

𝐼𝐿>$ = Y𝑦0 − γ" Z𝑦0 −
𝑥0𝑦0

𝑥0 + γ.Δ𝑥
[\

Δ𝑥
(𝑥0 + Δ𝑥)

− γ" Z𝑦0 −
𝑥0𝑦0

𝑥0 + γ.Δ𝑥
[. 

Introducing the parameter of the relative volume of exchange 
α = @,

,#
, impermanent changes (losses and gains) are expressed 

as 

𝐼𝐿>$ = 𝑦0
(1 − γ")(1 + γ.α) + γ"

1 + γ.α
α

1 + α − 𝑦0
γ.γ"α
1 + γ.α

, 
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or 

𝐼𝐿>$ = 𝑦0
α

1 + α
1 − γ.γ" + γ.(1 − 2γ")α

1 + γ.α
.											(14) 

Similarly, considering the relative losses (12), we obtain 

𝐼𝐿)$ =
𝑉:+;8</=
𝑉789:

– 1 =
α(1 − γ.γ" + γ.(1 − 2γ")α)
γ" + (1 + γ.α)(2 − γ" + α)

.			(15) 

The visualisation of 𝐼𝐿)$ depending on the trading fees 𝜙. and 
𝜙" is presented in Figure 3. Empirically, it is observed that 
whenever fees are non-zero (𝜙. + 𝜙" ≠ 0), there exists a 
region of impermanent gain, which expands along the 𝛼-axis 
as the total sum of fees increases. This effect is further 
illustrated in Figure 4.  

 

Figure 3. Relative impermanent losses depending on varying 
trading fees for Uniswap. 

 

Figure 4. Dependence of 𝐼𝐿)$ on the trading fee parameter 𝜙. 
and relative trading volume α for Uniswap. The fee rate for 
the received asset is set to zero (𝜙" = 0%). 

Next, we express the roots of the equation 𝐼𝐿)$ = 0 (14) to 
analytically determine the range 0 < α < 𝛼A>,, of 
impermanent gain for Uniswap: 

𝛼A>, =
1 − 𝛾.𝛾"

𝛾.(2𝛾" − 1)
 

In the limit of small fees 𝜙/ ≪ 1, the scale of 𝛼A>, can be 
estimated using the Taylor expansion: 

𝜶𝒎𝒂𝒙 =
𝜟𝒙𝒎𝒂𝒙
𝒙 = ,𝝓𝟏 +𝝓𝟐 + 𝒐(𝝓𝟏 +𝝓𝟐)0 ≈ 𝝓𝟏 +𝝓𝟐, 

which is illustrated in Figure 3 or Figure 4 where the boundary 
of the impermanent gain range reveals an almost linear 
dependency on the sum of fee rates for Uniswap. 

3.2. Balancer 

Let us use the explicit relations (4) and (7) for the Balancer, 
similar to the previous case of Uniswap. The impermanent 
losses are expressed as 

𝐼𝐿!" =
𝑤#
𝑤$

𝐾%

&!
&"

'%

(𝑥( + Δ𝑥)
&!
&"

'%
Δ𝑥 − γ)-

𝐾(

&!
&"

'%

𝑥(

&!
&"

−
𝐾(

&!
&"

'%

(𝑥( + γ%Δ𝑥)
&!
&"
.. 

By substituting the final volume of an asset 𝑦! = 𝑦" −

𝛾# (𝑦" −
$!

"#
"$%!

($!'(%)$)
"#
"$
) into the expression for liquidity 𝐾., we 

obtain 

𝐼𝐿>% =
𝑤,
𝑤-

⎝

⎜
⎛
𝑦0 − γ"k𝑦0 −

𝑥0

&!
&"𝑦0

(𝑥0 + γ.Δ𝑥)
&!
&"
l

⎠

⎟
⎞ Δ𝑥
𝑥0 + Δ𝑥

− γ"𝑦0k1 −
𝑥0

&!
&"

(𝑥0 + γ.Δ𝑥)
&!
&"
l. 

Using the parameter α, one rewrites it as 

𝐼𝐿>% = 𝑦0
𝑤,
𝑤-

(1 − γ")(1 + γ.α)
&!
&" + γ"

(1 + γ.α)
&!
&"

α
1 + α

− γ"𝑦0p1 −
1

(1 + γ.α)
&!
&"
q.																	(16) 

From relation (16), the derived implicit formula for impermanent 
losses of Balancer conservative function during a single trade is:  

𝐼𝐿+, = 𝑦"

𝑤$
𝑤%

-(1 − γ#)(1 + γ!α)
-#
-$ + γ#4 α − γ#(1 + α) 5(1 + γ!α)

-#
-$ − 16

(1 + γ!α)
-#
-$(1 + α)

. 
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Substituting the special case &!
&"
= 1, where Balancer 

becomes Uniswap, we get (14). For relative impermanent 
losses, one can derive the following dependence on α: 

𝐼𝐿%& =

=

𝑤'
𝑤(

%(1 − γ))(1 + γ*α)
+!
+" + γ)- α − γ)(1 + α) .(1 + γ*α)

+!
+" − 1/

𝑤'
𝑤(

%(1 − γ))(1 + γ*α)
+!
+" + γ)- + (1 + α)(1 + γ*α)

+!
+"

.		(17) 

It is notable that for Uniswap and Balancer, in accordance 
with the derived explicit relationships (15) and (17), the 
impermanent change does not depend on the ratio -#

,#
 when 𝑥0 is 

fixed. 

The visualisation of 𝐼𝐿)$ depending on the trading fees 𝜙. and 𝜙" 
is shown in Figure 5. The results with a fixed parameter &!

&"
 are 

similar to the ones in Figure 3. The dependence on varying asset 
weights is presented in Figure 6, showing that the range of 
impermanent gains shrinks as the ratio &!

&"
 increases. This 

monotonic behaviour is also demonstrated in the colour plot in 
Figure 7. 

 

Figure 5. Relative impermanent losses depending on different 
trading fees for Balancer with &!

&"
	= 	2. 

 

Figure 6. Dependence of Balancer’s I𝐿)% on parameters of 
relative asset weights &!

&"
 with fees 𝜙. = 𝜙" = 1%. 

 

Figure 7. Colour plot of Balancer’s relative impermanent 
losses (17) dependent on trading volume α and reserve ratio 
&!
&"

. Fixed trading fees 𝜙. = 3% and 𝜙" = 0% are implied. 

3.3. Curve 

Due to the complexity of the Curve conservative function (5), 
it is either cumbersome or even not possible to get explicit 
formulas similar to Uniswap (15) or Balancer (17). Hence, 
numerical simulations were conducted for this case. Figure 8 
illustrates how the amplification parameter 𝐴 influences the 
magnitude of relative impermanent loss (or gain). 

 

Figure 8. Curve 𝐼𝐿) (%) as a function of the relative trade 
volume 𝛼 (%) for various amplification parameters 𝐴, 𝜙. =
1%, 𝜙" = 1% and 𝑥0 = 1, 𝑦0 = 1. 

Contrary to Uniswap (14) and Balancer (16), impermanent 
loss for Curve conservative function (5) depends on the initial 
(before the trade) asset ratio -#

,#
. The dependence of the 

numeric simulation of impermanent losses and gains on the 
initial reserve ratio -#

,#
 and the relative trading volume α = @,

,#
, 

as depicted in Figure 9, represents a more complex structure 
for regions of impermanent gain than the corresponding 
dependencies for Uniswap and Balancer. The interpretation 
of this effect is that for Curve there is observed relatively 
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slight price slippage [12] for small trades, therefore, trades do 
not significantly impact the liquidity provider’s values (in the 
assumption of a small price change), unlike the Uniswap and 
Balancer invariants, in which the slippage effect is more 
extreme. In the case of large trades, the trend is different – 
there is a large price slippage resulting in large losses. 

 

Figure 9. Numeric simulation of 𝐼𝐿) (%) for Curve swap 
invariant as a dependence on the reserve ratio -#

,#
 and 𝛼 for 

𝐴 = 5, 𝜙. = 0%, 𝜙" = 1% and 𝑥0 = 1. 

 

3.4. Approximate Estimation for an Arbitrary 
Conservative Function 

Let’s consider the expression for impermanent losses (11) 
using the Taylor series to the second order: 

𝐼𝐿> = Y𝑝(𝑥0, 𝐾0) +
∂𝑝
∂𝑥
(𝑥0, 𝑦0)Δ𝑥 +

∂𝑝
∂𝐾

(𝑥0, 𝑦0)Δ𝐾

+ 𝑜(Δ𝑥) + 𝑜(Δ𝐾)\Δ𝑥

− γ.γ"𝑝(𝑥0, 𝐾0)Δ𝑥

−
1
2 γ.

"γ"
∂𝑝
∂𝑥
(𝑥0, 𝑦0)Δ𝑥" + 𝑜(Δ𝑥"). 

From previous calculations, neglecting higher-order’s terms 
and using the results from Appendix A, one can obtain the 
root of the quadratic equation describing the region of 
impermanent gain: 

Δ𝑥*!# ≈
(1 − 𝛾%𝛾))𝑝(𝑥0, 𝐾0)

41 − 12γ%
)γ)6

∂𝑝
∂𝑥 − (1 − γ%γ)) ⋅

∂𝑝
∂𝐾

∂𝐹
∂𝑥
∂𝐹
∂𝐾

. 

Recall that γ+ = 1 − ϕ+ and in practice ϕ+ ≪ 1, then 

Δ𝑥*!# ≈ 2(ϕ% +ϕ))
𝑝(𝑥(, 𝐾()

=∂𝑝(𝑥(, 𝐾()∂𝑥 =
.																				(18) 

So, to ensure positive impermanent gain, the estimate of the 

relative price change 
H,-(!#,0#),! H@,

;(,#,	L#)
 in the trade should be 

approximately no greater than twice the sum of the fee rates 
of AMM. Ultimately, within small trading volumes, the 
expression (18) allows for quick calculation of the scales of 
single trade which won’t lead to impermanent losses for 
liquidity providers. 

3.5. Invariant Comparison 

A comparison of the dependencies of impermanent losses 
for Uniswap, Balancer and Curve invariants is shown in 
Figure 10. The values from Appendix B were chosen as the 
parameters for the simulation. It is important that for all 
considered invariants with proposed parameters, there is a 
region of impermanent gain for values of relative trade 
volumes 𝛼 < 0.2%. The largest region of impermanent gain 
is achieved for the hybrid invariant Curve with -#

,#
	= 	1, for 

which the fee rate takes minimum relative values (0.01% and 
0.02%, respectively). In this case, the amplification 
coefficient 𝐴 = 10 or 𝐴 = 15, so the behaviour is very 
different from Uniswap, similar to the dependence shown 
in Figure 8.  

Another way to get similar conclusions is to use the 
approximation in Eq. (18). It was found that the size of the 
gain region is inversely proportional to the initial derivative of 
price during the exchange, which for Curve invariant (Figure 
1) with -#

,#
	= 	1 has a smaller value than for Uniswap and 

Balancer.  

 

Figure 10. Comparison of relative impermanent changes 𝐼𝐿) 
for different swap invariants with parameters from Appendix 
B. For Curve, we additionally suppose that -#

,#
	= 	1. 



 
 
 

The JBBA  |  Volume 8 |  Issue 2  |  2025                                 Published Open Access under the CC-BY 4.0 Licence 

                                                                                                                                               

8 

 

4. Practical Analysis on Real-World Data 

In this section, a naive method of adjusting AMM fees will be 
proposed based on the requirement to optimise the area of 
impermanent gain during a single trade for liquidity providers. 
The invariants listed in Appendix B will be selected as real 
data sources for collecting statistics from January 2024 to 
December 2024. 

4.1. Data Analysis 

The statistical analysis of the obtained data is shown in Table 
1. For the Balancer pool wstETH/AAVE, the weight ratio 
parameter &!

&"
 depends on the direction of the swap, therefore 

two different values are chosen for this case. 

AMM pool Swap 
direction 𝛂𝒎𝒆𝒂𝒏,% 𝛂𝒎𝒆𝒅𝒊𝒂𝒏,% 𝛂𝟗𝟗,% 

Uniswap 
WETH/USDC Both 0.007 0.001 0.094 

Uniswap 
WETH/USDT Both 0.005 0.001 0.073 

Uniswap 
WETH/WBTC Both 0.034 0.003 0.333 

Sushiswap 
WETH/USDC Both 0.023 0.005 0.231 

Sushiswap 
WETH/DAI Both 0.086 0.063 0.502 

Sushiswap 
WETH/WBTC Both 0.031 0.002 0.234 

Balancer 
WETH/WBTC Both 0.124 0.088 0.666 

Balancer 
wstETH/AAVE 

> 0.094 0.075 0.427 
< 0.022 0.018 0.083 

Curve 
FRAX/USDC Both 1.032 0.1852 10.188 

Curve 
frxETH/WETH Both 0.313 0.0328 4.6295 

Table 1. Statistical analysis of the relative trade volume α of 
selected AMM pools. The mean αA+>N, median αA+:/>N and 
99th percentile αOO were chosen as the main values described 
in the distribution. 

 

Figure 11.  Comparison of the distributions of relative trade 
volume 𝛼 for different AMM pools from Appendix B. 

The histogram distributions of the trade volume α are shown 
in Figure 11. It can be concluded that for Uniswap, 
Sushiswap (fork of Uniswap) and Balancer pools the most 
concentrated sizes of swap are within α < 	0.3%. 

Analysis of the share of total trade number exhibits the 
impermanent gain effect described in the theoretical section. 
Table 2 shows that for most of the pools of Uniswap, 
Sushiswap and Balancer, this value is greater than 95%. 
However, this is not true for Curve, since the distribution in 
Figure 11 is dominated by large volumes α. The proposed 
values of 44.64% and 52.89% do not contradict with the 
results in Figure 11, since the calculation in Table 2 did not 
assume that -#

,#
= 1, and the instantaneous real values of 

reserves were taken from the pools. 

AMM pool Swap 
direction 

% of swaps with 
impermanent gain effect 

Uniswap 
WETH/USDC Both 99.88 

Uniswap 
WETH/USDT Both 99.93 

Uniswap 
WETH/WBTC Both 98.86 

Sushiswap 
WETH/USDC Both 99.43 

Sushiswap 
WETH/DAI Both 97.51 

Sushiswap 
WETH/WBTC Both 99.39 

Balancer 
WETH/WBTC Both 93.20 

Balancer 
wstETH/AAVE 

> 95.13 

< 95.82 
Curve 

FRAX/USDC Both 52.89 

Curve 
frxETH/WETH Both 44.64 

Table 2. The share of trades that lead to the effect of 
impermanent gain for liquidity providers. 

4.2. Trade Fee Rate Adjustment 

As a practical recommendation, we assume the simplest way 
to manage the level of fee rate based on historical trading 
statistics. For this, we use a naive approach, according to 
which the rate on day 𝑇 will be selected from the condition 
that 𝑄% trades of the previous week 𝑇 − 7,… , 𝑇 − 1 should 
not have impermanent losses (i.e., the presence of 
impermanent gain). Visualisation of this mechanism for 
adjusting fee rate is shown in Figure 12 (for 
WETH/Stablecoin pairs) and Figure 13 (for WETH/WBTC 
pairs), where 𝑄 = 99%. It appears that for different pools, 
the proposed fee rate differs from the constant value of 0.3%. 
WETH/WBTC pairs are more volatile, so this method of 
adjustment leads to higher fee values than in the case of pairs 
with stable tokens. This observation is confirmed by the 
results of the statistical study in Table 2. Pairs WETH/USDC, 
WETH/DAI (Sushiswap, Figure 14), and WETH/WBTC 
(Balancer, Figure 12) are outstanding, which is associated with 
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the fact that the trading liquidity and volumes of these pairs 
are smaller than the others. 

 

Figure 12. Results for adjusted exchange fee rate based on 
historical trades of the previous week for WETH/WBTC 
pools with Q=99%. 

Let us consider the influence of the fee adjustment in more 
detail for the popular WETH/USDC pool with Uniswap 
invariant. In Figure 13, the dependencies are shown for 
different 𝑄 values in comparison with average price and 
trading volumes. These results suggest that more activity on 
the market leads to a higher proposed fee (for retaining the 
impermanent gain effect). This conclusion makes sense since 
such situations often happen as a result of news events and 
increased fees boost the profitability of liquidity providers. 
This observation illustrates the potential for non-trivial 
dynamic fee rate management even for classical AMM 
invariants. 

 

Figure 13. Results for adjusted exchange fee rate for 
WETH/USDC pool at different 𝑄 percentile values 
compared to price and trading volumes (shown in relative 
values). 

 

Figure 14. Results for adjusted exchange fee rate based on 
historical trades of the previous week for WETH/Stablecoin 
pools with Q=99%. 

5. Limitations 

The focus on the study of the single swap impact in an AMM 
on liquidity providers may lead to some distortion in the 
conclusions regarding the real dynamics of the market 
situation. Impermanent changes are generally affected by the 
arbitrary sequence of trades. Therefore, the obtained formulas 
for impermanent losses and gains could be considered only as 
upper estimates for the corresponding values. 

In addition, the proposed study does not consider complex 
pricing dependencies on many external factors, such as 
volatility or changes in the overall liquidity of assets over time. 
In real market conditions, trading involves taking into 
consideration price fluctuations, various strategies of 
participants (high-frequency and positional trading, arbitrage 
and other types), as well as randomness in making decisions 
on transactions, which can significantly affect the actual costs 
for liquidity providers for a period of provisioning.  

Furthermore, the optimal fee rate is determined by the 
exchange’s attractiveness. Increased fees could diminish 
trading volumes, potentially leading to higher overall costs. 
This underscores the significance of complex and thorough 
evaluation of the variables affecting impermanent changes. 

6. Conclusion 

Throughout our investigation of the influence of the swap fee 
parameter on the impermanent losses of liquidity providers in 
AMM systems like Uniswap, Balancer and Curve, overall 
significant conclusions can be stated. 

Firstly, we discovered that the trading fee parameters inherent 
in AMM mechanisms exert a direct effect on the magnitude of 
impermanent losses incurred by liquidity providers. 
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Specifically, during small trades (α < 	0.2% for all considered 
pools), these losses frequently turn out to be impermanent 
gains. Moreover, for the majority of the studied pools of the 
Uniswap, Sushiswap and Balancer protocols, it turned out 
that 95% of historical single swaps lead to impermanent gain. 
This conclusion could be insightful for novel approaches to 
optimise liquidity management strategies, reduce risks and 
increase profitability. 

Secondly, the theoretical formulas developed throughout this 
study serve as valuable instruments for analysing and predicting 
liquidity strategies depending on changes in fees on a 
microeconomic level. The obtained dependencies are applicable 
not only to practitioners but also to researchers seeking to 
assess the potential consequences of various fee management 
scenarios. For example, the proposed naive way to set fee rates 
based on weekly historical data could be used to optimise the 
gain of liquidity providers from a single trade (and presumably 
to optimise the integral return). The authors consider a more 
detailed analysis of this approach and methods of backtesting to 
be the next stage of researching this topic. 

Additionally, our findings highlight the necessity for ongoing 
analysis regarding the fee structures for AMM protocols with 
conservative invariant functions. By refining our 
understanding of how different fee levels impact liquidity 
provision, we can enhance the efficiency and stability of 
decentralised exchanges, thereby contributing to the broader 
ecosystem’s growth and sustainability. Ultimately, this research 
underscores the importance of comprehensive and 
fundamental studies focusing on the investigation of swap fees 
and liquidity dynamics. 
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Appendix A. Differentials in the Exchange Process 

Among the set of variables (𝑥, 𝑦, 𝐾), only one is independent 
due to the presence of two binding relations—the implicit 
expression of the invariant (1) and the exchange equation for 
Δ𝑥	 → Δ𝑦 (9). Using the smoothness of these functions, we 
rewrite them in differential form: 

∂𝐹
∂𝑥 𝑑𝑥 +

∂𝐹
∂𝑦 𝑑𝑦 +

∂𝐹
∂𝐾 𝑑𝐾 = 0 

and 

𝑑𝑦 = −γ.γ" ⋅ 𝑝(𝑥, 𝐾) ⋅ 𝑑𝑥 = −γ.γ"

∂𝐹
∂𝑥
∂𝐹
∂𝑦

𝑑𝑥. 

Substituting one expression into another, we get 

∂𝐹
∂𝑥 𝑑𝑥 − γ.γ"

∂𝐹
∂𝑦

∂𝐹
∂𝑥
∂𝐹
∂𝑦

𝑑𝑥 +
∂𝐹
∂𝐾 𝑑𝐾 = 0, 

from which we obtain the desired relationship of differentials 

𝑑𝐾 = (1 − γ.γ")p−
∂𝐹
∂𝑥
∂𝐹
∂𝐾

q𝑑𝑥.	

 

Appendix B. Ethereum AMM Pools 

In the study, the Ethereum data was parsed for the period 
from January 2024 to December 2024. The addresses of the 
specific pools Uniswap v2, Sushiswap v2 (fork of Uniswap 
v2), Balancer v2 and Curve are listed in Tables 3–6.  

Pool Ethereum Address 
WETH/USDC 0xb4e16d0168e52d35cacd2c6185b44281ec28c9dc 
WETH/USDT 0x0d4a11d5eeaac28ec3f61d100daf4d40471f1852 
WETH/WBTC 0xbb2b8038a1640196fbe3e38816f3e67cba72d940 

Table 3. Addresses of selected Uniswap v2 pools. 

Pool Ethereum Address 
WETH/USDC 0x397ff1542f962076d0bfe58ea045ffa2d347aca0 
WETH/USDT 0xc3d03e4f041fd4cd388c549ee2a29a9e5075882f 
WETH/WBTC 0xceff51756c56ceffca006cd410b03ffc46dd3a58 

Table 4. Addresses of selected Sushiswap v2 pools. 

 

Pool Ethereum Address 
WETH/WBTC 0xa6f548df93de924d73be7d25dc02554c6bd66db5 
wstETH/AAVE 0x3de27efa2f1aa663ae5d458857e731c129069f29 

Table 5. Addresses of selected Balancer v2 pools. 

Pool Ethereum Address 
FRAX/USDC 0xdcef968d416a41cdac0ed8702fac8128a64241a2 
frxETH/WETH 0x9c3b46c0ceb5b9e304fcd6d88fc50f7dd24b31bc 

Table 6. Addresses of selected Curve pools. 

It is important to note that Curve pools are used for stable 
pairs, often contain more than two tokens and use price oracle 
data, therefore, only pools from the Frax Finance ecosystem 
were selected because they match our theoretical description. 

Table 7 is a summary table of the invariant parameters used 
for the pools in the study. Since Curve AMM is used for 
relatively stable pairs, then fee rates are about 10–50 times 
smaller than in other pools. 

AMM type AMM Pool Fee rate (%) Additional 
parameters 

Uniswap 

WETH/USDC 𝜙! = 0.3 - 

WETH/USDT 𝜙! = 0.3 - 

WETH/WBTC 𝜙! = 0.3 - 

Sushiswap 
WETH/USDC 𝜙! = 0.3 - 

WETH/DAI 𝜙! = 0.3 - 

WETH/WBTC 𝜙! = 0.3 - 

Balancer 

WETH/WBTC 𝜙! = 0.25 
𝑤./01
𝑤.203

= 1 

wstETH/AAVE 𝜙! = 0.5 
𝑤-45/01
𝑤667/

=
1
4 

Curve 
FRAX/USDC 𝜙# = 0.01 𝐴 = 15 

frxETH/WETH 𝜙# = 0.02 𝐴 = 10 

Table 7. Fee rates and specific parameters of AMM pools 
studied in the current work. 


