

The	
 JBBA	
 	
 |	
 	
 Volume	
 4	
 |	
 	
 Issue	
 1	
 	
 |	
 	
 2021	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Published	
 Open	
 Access	
 under	
 the	
 CC-­‐‑BY	
 4.0	
 Licence	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1	

 PEER Reviewed RESEARCH

 OPEN ACCESS
ISSN Online: 2516-3957

ISSN Print: 2516-3949
https://doi.org/10.31585/jbba-4-1-(9)2021

Investment Compliance in Hedge Funds using
Zero Knowledge Proofs
Komal Kalra, Shubham Sahai, Sandeep Kumar Shukla
Department of Computer Science & Engineering, Indian Institute of Technology (IIT) Kanpur, India

Correspondence: komalklr@gmail.com
Received: 15 January 2021 Accepted: 24 March 2021 Published: 5 April 2021

Abstract

Financial Regulation is a form of compliance system that subjects financial institutions to certain requirements and restrictions.
Investment Compliance is an example that involves investment restrictions and monitoring on behalf of investors. Hedge Funds differ
from other traditional funds such as mutual funds because of their ability to employ complex investment and hedging techniques. These
are private entities with few public disclosure requirements. This is useful in a way as the strategies used are confidential which allows
financial agents to participate in the financial markets without any fear of information leakage, thereby promoting liquidity. However,
this is often implied as the lack of transparency. Hedge Funds are expected to produce higher returns, but sometimes investors seek a
risk guarantee in addition to higher returns. However, too much transparency rules out the incentives financial entities have by
participating in the first place. On the other hand, too much secrecy may give rise to malicious entities that can break the rules due to a
lack of compliance. We aim to solve this problem of protecting investors while ensuring the privacy of financial bodies using zero
knowledge proofs. Proofs can be visualised as a way of providing enough information to investors while the zero-knowledge property
of proofs maintains the privacy of the fund manager’s strategies. We propose a protocol to address this scenario using Zokrates, a
framework for verifiable computation using Zk-SNARKs on Ethereum, to encode the constraints and export the verifier. Based on our
implementation and analysis, it can be concluded that zero knowledge proofs provide us with a variety of ways to develop compliance
systems.

Keywords: compliance, investors, fund manager, proofs, transparency

JEL Classifications: G11, G18, G28

1. Introduction to Investment Compliance

In the financial context, the term hedge refers to placing limits
on risk. The ability to employ complex trading strategies
distinguishes hedge funds from other funds. Generally, these are
considered risky investments, which is why only accredited
investors, investors with high financial sophistication, can make
investments in them. Although hedge funds are not subject to
many restrictions that apply to regulated funds, guidelines were
passed in some countries following the financial crisis of
2008 to increase government regulation of hedge funds. In
addition, SEC and other regulatory bodies have requested more
transparent hedge fund practices over the years [34, 38].

Hedge Funds are privately owned funds that face relatively
fewer regulations and conditions than other funds (e.g. mutual
funds and equity funds). To protect investors, there are strict
guidelines from regulatory bodies, such as SEC. Few examples
would be that only investors with income more than a
particular value are allowed, only investors with a net worth

exceeding a particular value are allowed, etc. However,
investors would also like to ensure that fund managers are
behaving properly and that their investments do not exceed
the level of risk. On the other end, the fund manager might
not want to disclose all their portfolio characteristics as this
may lead to leakage of the strategies used by them. Portfolio
characteristics for a particular fund describe the allocation of
investments in different assets.

We begin by defining zero knowledge proof systems [36], a
scheme in which the prover convinces the verifier about the
fact that they have knowledge about a particular statement
without revealing anything about the statement. Section 2
describes the zero knowledge proofs in detail. Due to the
confidential nature of the portfolio and the need to regulate
the investment process to protect interest of investors, this
problem can be reduced to zero-knowledge proofs. Proofs can
be visualised as a way of providing enough information to
investors while the zero-knowledge property of proofs helps
to maintain the privacy of the fund manager’s strategies.

The	
 JBBA	
 	
 |	
 	
 Volume	
 4	
 |	
 	
 Issue	
 1	
 	
 |	
 	
 2021	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Published	
 Open	
 Access	
 under	
 the	
 CC-­‐‑BY	
 4.0	
 Licence	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

2	

1.2 Related Works

To solve the problem of conflict of interest between investors
and fund managers, Szydlo [31], in 2005, described a protocol
between investors and fund managers. Precisely, he described
the portfolio characteristics and risk factors for each asset and
defined a linear condition that is to be proven by the fund
manager to convince investors that their risk measure does not
exceed any predefined risk threshold. For this, he used
Pederson Commitments [36] and Interval Proofs using
Shoup’s NTL package [37]. Another related work is given by
Gowravaram [18] which uses the same method of
commitments and Interval Proofs.

1.3 Our Contribution

As there is a lack of trust between the fund manager and
investors, there needs to be a way to solve this problem of
conflict of interest between parties. Here comes the role of
blockchain smart contracts to verify that the fund manager
follows the rules specified by the investor (or predefined by
the fund manager) without depending upon any central
authority. We use Ethereum smart contracts as a form of
agreement between two parties such that investors can
verify that funds follow the specified guidelines and are
behaving properly. For this, we use a zero-knowledge proof
systems framework Zokrates (SNARKS for Ethereum),
which uses libsnark by Pinocchio protocol (or bellman for
Groth16). Libsnark is a C++ library for SNARK systems
and provides mechanisms to encode most of the problems
in the form of Rank-1 Constraint Systems(R1CS) and then
into Quadratic Arithmetic Programs (QAP), from which
proofs are generated such that bilinear maps can be used
for verification which makes it efficient to verify. To
summarise,

• Zokrates framework provides us with the ability to

generate the Solidity Contract which can be deployed
directly on Ethereum and verification can be performed
by calling a method on the contract.

• One can specify any condition (that can be encoded in
libsnark) and encode it into constraints so that
verification can be performed in constant time and with
constant proof size.

• Using this method to encode the constraints also gives us
an added advantage to encode quadratic (and higher-
degree) constraints that might be required from the
financial point of view.

We begin with the definition of zero knowledge proofs and
cryptographic preliminaries required for the protocol in
Section 2. Section 3 describes Pinocchio Protocol and
Zokrates architecture. In Section 4, the problem statement is
explained in detail. Section 5 describes the protocol workflow
and implementation details using Zokrates. Section 6 presents
the evaluation results of the proposed protocol. Finally, in
Section 7, we conclude this article and suggest some scope of
future work for this application.

2. Zero-Knowledge Proof Systems

The concept of zero-knowledge was first introduced by three
MIT researchers, Shafi Goldwasser, Silvio Micali and Charles
Rackoff [35], where they were working on interactive proof
systems in which the prover convinces the verifier that some
statement holds by sending interactive messages. Previously, the
research work in this context was assumed to have an honest
verifier where a malicious prover tries to convince the verifier
about the correctness of some statement. These researchers
turned the problem and gave a new aspect in which a verifier
can also be malicious. Precisely, they emphasised; how much
extra information the verifier can derive from the proof
transcripts other than the fact that the statement holds.

Any ZKP proof system must have the following three
properties:

• Correctness: If the statement is true, the prover should

be able to convince the verifier with overwhelming
probability.

• Soundness: If the statement is false, the prover should
not be able to convince the verifier at any cost.

• Zero-Knowledgeness: The verifier must not be able to
learn anything except that the statement holds.

Proving correctness can be done easily by playing multiple
rounds of the protocol interactively giving a probabilistic
guarantee to the proof system. To prove soundness, we make
use of the existence of a knowledge extractor that interacts with
the prover and can extract the witness from the transcripts if the
protocol is completed successfully. The fact that the extractor
can retrieve the witness from transcripts implies that the witness
was injected into the transcripts by the prover.

The challenging part comes in proving the last property.
Researchers have argued that zero-knowledgeness can be
proven by using the concept of Simulation. If it can be proven
that there exists a simulator that has no information and
whose transcript is identically distributed to the real prover,
then the verifier can extract the same amount of knowledge
from the real transcripts as can be extracted by simulated
transcripts; however, as the simulated transcripts have no
information in the first place, the verifier cannot extract any
information from the real transcript as well.

2.1 Embedded Curves

Zk-Snarks uses many cryptographic primitives
[2,6,7,8,12,17,30]. Besides, we discuss here the embedded
curve used in Zokrates to link the identity with the prover [12].

In Zokrates, all arithmetic operations are defined on a finite
field [30], specifically, a Galois Field, 𝑮𝑭(𝒑𝒏) with 𝒏	
 = 	
 𝟏.
This means all operations are modulo 𝒑 where 𝒑 is the order of
a group of elliptic curves [7]. In Zokrates, this 𝒑 is defined as

𝒑 = 𝟐𝟏𝟖𝟖𝟖𝟐𝟒𝟐𝟖𝟕𝟏𝟖𝟑𝟗𝟐𝟕𝟓𝟐𝟐𝟐𝟐𝟒𝟔𝟒𝟎𝟓𝟕𝟒𝟓𝟐𝟓𝟕𝟐𝟕𝟓𝟎𝟖𝟖𝟓𝟒𝟖𝟑𝟔𝟒𝟒𝟎𝟎𝟒𝟏𝟔

𝟎𝟑𝟒𝟑𝟒𝟑𝟔𝟗𝟖𝟐𝟎𝟒𝟏𝟖𝟔𝟓𝟕𝟓𝟖𝟎𝟖𝟒𝟗𝟓𝟔𝟏𝟕

The	
 JBBA	
 	
 |	
 	
 Volume	
 4	
 |	
 	
 Issue	
 1	
 	
 |	
 	
 2021	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Published	
 Open	
 Access	
 under	
 the	
 CC-­‐‑BY	
 4.0	
 Licence	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

3	

This value is taken so that, it is equal to the group order of the
BN128 curve used in Ethereum. This makes verification on
the blockchain much cheaper as Ethereum provides
precompiled contracts for the BN128 curve. As elliptic curve
operations such as addition and multiplication involve
modular arithmetic and modulo operations are inefficient in
SNARKs, incorporating elliptic curve cryptography becomes
very expensive in the Zokrates system.

This is solved using an embedded curve in Zokrates,
BabyJubJub, which has parameters such that the order of the
field over which it is defined becomes equal to the group order
of the system curve. This way elliptic curve operations get
reduced to the simple field arithmetic in Zokrates and make
elliptic curve operations nearly free.

Figure 1: Embedded Curve

3. Understanding Zokrates

Zokrates is a toolbox that uses SNARKs for verifiable
computations. It provides us with all the tools from specifying
the constraints in DSL to export the verification code to
Solidity smart contract. In this section, we discuss the details
of the Pinocchio Protocol by PGHR13[26] and, finally, we
discuss Zokrates.

3.1 Pinocchio Protocol

A verifiable computation contains three algorithms
(𝑺𝒆𝒕𝒖𝒑, 𝑪𝒐𝒎𝒑𝒖𝒕𝒆, and	
 𝑽𝒆𝒓𝒊𝒇𝒚). 𝑺𝒆𝒕𝒖𝒑 takes the
computation function, a security parameter, and converts it to
Common Reference String (CRS). This will output a proving
and verification key. 𝑪𝒐𝒎𝒑𝒖𝒕𝒆 will take the computation
function, inputs and proving key and gives the output to
computation and proof. 𝑽𝒆𝒓𝒊𝒇𝒚 will verify the proof using the
verification key. Proof needs to be zero knowledge for our case.

We consider four important aspects of this protocol.

• Correctness: For any function F and any input u, if we

run (𝑬𝑲𝑭	
 ,𝑽𝑲𝑭) 	
 ← (𝑭, 𝟏𝝀) and (𝒚, 𝝅𝒚) ←
𝑪𝒐𝒎𝒑𝒖𝒕𝒆(𝑬𝑲𝑭,𝒖), then we always get 𝟏 =
	
 𝑽𝒆𝒓𝒊𝒇𝒚(𝑽𝑲𝑭,𝒖, 𝒚, 𝝅𝒚).	
 Here 𝑬𝑲𝑭	
 and 𝑽𝑲𝑭 are the
evaluation and verification keys. This comes from the
completeness property of proof systems.

• Security: For any function 𝑭 and any probabilistic
polynomial-time adversary 𝑨, 𝑷𝒓[(𝒖, 𝒚, 𝝅𝒚) 	
 ←
𝑨(𝑬𝑲𝑭,𝑽𝑲𝑭	
):	
 𝑭(𝒖) 	
 = 	
 𝒚 and 𝟏	
 =
	
 𝑽𝒆𝒓𝒊𝒇𝒚(𝑽𝑲𝑭,𝒖, 𝒚, 𝝅𝒚)]	
 is negligible.

• Zero-Knowledgeness: If 𝑭(𝒖,𝒘) is a function with 𝒖
as the public input and 𝒘 as the private input, then given
a proof 𝝅𝒚	
 and output 𝒚 for the given function 𝑭, there
must not be any way of extracting 𝒘 from the given
information.

• Efficiency: 𝑽𝒆𝒓𝒊𝒇𝒚 must be cheaper as compared to
𝑪𝒐𝒎𝒑𝒖𝒕𝒆. 𝑺𝒆𝒕𝒖𝒑 is also important but this depends on
the underlying constraints, so the amortised cost is
reasonable.

KEA Assumption (Knowledge of Exponent Assumption):
For any adversary 𝑨, taking input 𝒒,𝒈, 𝒈𝒂 and returns (𝑿; 𝒀)
with 𝒀	
 = 	
 𝑿𝒂, there always exists a knowledge extractor 𝑲
which given the same inputs as 𝑨, returns 𝒙 such 𝒈𝒙 = 𝑿.
Additionally, if given two points 𝑨	
 𝒂𝒏𝒅	
 𝑩 where 𝑩 = 𝐴Y and
a point 𝑷, then the only way to calculate 𝑷𝒄 is when 𝑷 is
derived from 𝑨; that is, there exists some 𝜸	
 that is 𝜸.𝑨 = 𝑷.

Quadratic Programs: Now, we assume an arithmetic circuit
and define a Quadratic Arithmetic Program (QAP). For
simplicity, we assume a simple circuit as shown in Figure 2
with four inputs and two outputs from multiplication gates.
𝒑𝟏	
 and 𝒑𝟐 are the inputs to gate 𝑮𝟏.	
 𝒑𝟑,	
 𝒑𝟒 and 𝒑𝟓 are the
inputs to gate 𝑮𝟐(addition gates are not considered). 𝒑𝟓 and
𝒑𝟔 are the outputs of gates 𝑮𝟏 and 𝑮𝟐, respectively.

Figure 2: Circuit for QAP

QAP is defined as:

Q: Let V = {𝒗𝒌(𝒙)}	
 ,W =	
 {𝒘𝒌(𝒙)} , Y =	
 {𝒚𝒌(𝒙)} for 𝒌	
 ∈
	
 {𝟎. .𝒎}	
 be three sets of m+1 polynomials and 𝒕(𝒙), a target
polynomial. Let 𝑭 be a function taking 𝒏 elements of 𝑭, giving
𝒏’ outputs and let 𝑵 = 𝒏 +	
 𝒏’. Then, 𝑸 computes 𝑭 if
(𝒑𝟏, 𝒑𝟐.....𝒑𝒏) is a legal assignment of 𝑭, iff ∃ coefficients
(𝒑𝑵e𝟏. . . . 𝒑𝒎)	
 such that 𝒕(𝒙) divides 𝒑(𝒙).	
 Here 𝒑(𝒙) is
defined as

𝒑(𝒙) = f𝒗𝟎(𝒙) +h𝒄𝒌(𝒙). 𝒗𝒌(𝒙)
𝒎

𝒌i𝟏

j . f𝒗𝟎(𝒙)

+h𝒄𝒌(𝒙).𝒘𝒌(𝒙)
𝒎

𝒌i𝟏

j

− f𝒚𝟎(𝒙) +h𝒄𝒌(𝒙). 𝒚𝒌(𝒙)
𝒎

𝒌i𝟏

j

The size of 𝑸 is 𝒎 and degree is 𝒅𝒆𝒈𝒓𝒆𝒆(𝒕(𝒙)).

The	
 JBBA	
 	
 |	
 	
 Volume	
 4	
 |	
 	
 Issue	
 1	
 	
 |	
 	
 2021	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Published	
 Open	
 Access	
 under	
 the	
 CC-­‐‑BY	
 4.0	
 Licence	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

4	

Now we select a root 𝒓𝒈 	
 ∈ 	
 𝐹 for each multiplication gate and
express the target polynomial 𝒕(𝒙) as ∏ (𝒙 −𝒈
𝒓𝒈).	
 𝑽,𝑾	
 𝒂𝒏𝒅	
 𝒀 are defined such that 𝑽 encodes the left
input for each multiplication gate, 𝑾 encodes the right input
and 𝒀 encodes the outputs. Also, we define

𝒗𝒌(𝒓𝒈) = o𝟏, 𝒌𝒕𝒉	
 𝒘𝒊𝒓𝒆	
 𝒊𝒔	
 𝒂	
 𝒍𝒆𝒇𝒕	
 𝒊𝒏𝒑𝒖𝒕	
 𝒕𝒐	
 𝒈𝒂𝒕𝒆	
 𝒈
𝟎, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

𝒘𝒌(𝒓𝒈) and 𝒚𝒌(𝒓𝒈) are defined in a similar way. Now if we
look at a specific gate 𝑮𝒊 and its root 𝒓𝒈. Equation 4.1 becomes

fh𝒄𝒌(𝒙). 𝒗𝒌(𝒙)
𝒎

𝒌i𝟏

j . fh𝒄𝒌(𝒙). 𝒘𝒌(𝒙)
𝒎

𝒌i𝟏

j

= s h 𝒄𝒌
𝒌∈𝑰𝒍𝒆𝒇𝒕

u . s h 𝒄𝒌
𝒌∈𝑰𝒓𝒊𝒈𝒉𝒕

u 	

= 	
 𝒄𝒈. 𝒚𝒌(𝒓𝒈) = 	
 𝒄𝒈

which simply means that for any multiplication gate product of
inputs is equal to the output.

Trusted Setup: We take KEA Assumption and extend it
further by saying that if we have n pair of points (𝑷𝟏,𝑸𝟏),
(𝑷𝟐,𝑸𝟐)……	
 (𝑷𝒏,𝑸𝒏), where ∀𝒊, 𝑷𝒊.𝒌 = 𝑸𝒊	
 and we need to
come up with two points (𝑷, 𝑸) such that 𝑷.𝒌	
 = 	
 𝑸. Now if
𝒌 is known, this becomes very trivial; therefore, k needs to be
hidden or thrown out after using so that it cannot be used
again. This dumping of toxic waste is important and the whole
task of generating these points is known as a trusted setup and
must only be performed by someone trustworthy. Considering
this, the only way to come up with a point (𝑷,𝑸) such that
𝑷.𝒌	
 = 	
 𝑸 is when 𝑷 is a linear combination of
(𝑷𝟏, 𝑷𝟐. . . 𝑷𝒏) and 𝑸 is a linear combination of
(𝑸𝟏,𝑸𝟐. . . 𝑸𝒏) which implies that the coefficients are known
by the prover.

Verifiable Computation: In a real-world scenario, most of
the time the polynomials 𝑽, 𝑾 and 𝒀 are very large; therefore,
we cannot use them directly. To solve this problem,
polynomials are converted into elliptic curve points. Using
elliptic curve points also helps in verifying the correctness.
Formally, instead of sending polynomials 𝑽,𝑾 and 𝒀, we send
elliptic curve points in the form:

• 𝑮	
 ∗ 	
 𝒗𝟏(𝒕)	
 , 𝑮	
 ∗ 	
 𝒗𝟏(𝒕) ∗ 𝒌𝒗
• 𝑮	
 ∗ 	
 𝒗𝟐(𝒕)	
 , 𝑮	
 ∗ 	
 𝒗𝟐(𝒕) ∗ 𝒌𝒗
• …………..
• 𝑮	
 ∗ 	
 𝒘𝟏(𝒕)	
 , 𝑮	
 ∗ 	
 𝒘𝟏(𝒕) ∗ 𝒌𝒘
• 𝑮	
 ∗ 	
 𝒘𝟐(𝒕)	
 , 𝑮	
 ∗ 	
 𝒘𝟐(𝒕) ∗ 𝒌𝒘
• …………..
• 𝑮	
 ∗ 	
 𝒚𝟏(𝒕)	
 , 𝑮	
 ∗ 	
 𝒚𝟏(𝒕) ∗ 𝒌𝒚
• 𝑮	
 ∗ 	
 𝒚𝟐(𝒕)	
 , 𝑮	
 ∗ 	
 𝒚𝟐(𝒕) ∗ 𝒌𝒚
•

Here 𝒕, 𝒌𝒗,𝒌𝒘	
 𝒂𝒏𝒅	
 𝒌𝒚	
 are toxic wastes. Now assuming the
extended KEA assumption, the prover needs to send the
following values:

• 𝝅𝒗 = 	
 𝑮 ∗ 𝑽(𝒕), 𝑮 ∗ 𝑽(𝒕) 	
 ∗ 𝒌𝒗
• 𝝅𝒘 = 	
 𝑮 ∗𝑾(𝒕), 𝑮 ∗ 𝑾(𝒕) 	
 ∗ 𝒌𝒘
• 𝝅𝒚 = 	
 𝑮 ∗ 𝒀(𝒕), 𝑮 ∗ 𝒀(𝒕) 	
 ∗ 𝒌𝒚

To make sure all these linear equations are using the same
coefficients, this value is also added to the setup: 𝑸	
 = 	
 𝑮	
 ∗
(𝑽	
 (𝒕) 	
 + 𝑾(𝒕) 	
 + 	
 𝒀	
 (𝒕)) 	
 ∗ 𝒃. 𝒃 is again the toxic waste.
Then, we use elliptic curve pairings to verify that 𝑽	
 ∗ 𝑾 −
𝒀	
 = 	
 𝑯 − 	
 𝑷 . We check that

𝒆(𝝅𝒗, 𝝅𝒘)/𝒆(𝝅𝒚,𝑮) = 	
 𝒆(𝝅𝒉, 𝑮 ∗ 𝑷(𝒕))	

To check that all combinations are using the same coefficients,
we again use the pairings and verify that 𝑸 matches with the
provided 𝑽	
 +𝑾	
 + 	
 𝒀.

3.2 Zokrates

Zokrates uses the idea of the delegation of computation.
Computation is delegated to a single node rather than all
nodes traditionally and that node executes the logic and
publishes the result on-chain (Figure 3). This method gives
two advantages.

Figure 3: Delegated Computation in Zokrates

• The delegate node can use private information to execute
the computation and publishes only the result. This is not
possible in the traditional blockchain setting.

• Delegate Node only writes the result to the blockchain
which increases efficiency in a way that all the nodes only
store the result.

However, the problem here is any delegated node needs to be
trusted. Therefore, the idea of verifiable computation is
employed using Pinocchio Protocol. Delegated Node becomes
the prover and computes the proof for computation, which is
then verified by nodes on the blockchain. Privacy can be
maintained by using zero-knowledge proofs.

3.2.1. Architecture

Zokrates supports writing the code in high-level language and
converting it to a verification smart contract so that it can be

The	
 JBBA	
 	
 |	
 	
 Volume	
 4	
 |	
 	
 Issue	
 1	
 	
 |	
 	
 2021	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Published	
 Open	
 Access	
 under	
 the	
 CC-­‐‑BY	
 4.0	
 Licence	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

5	

deployed and the proofs verified on-chain. It has some inbuilt
components for its processes. Below is the summary of each
component in Zokrates.

• Compiler: Parsing and Flattening of Code is done by the

Compiler inside Zokrates. After flattening, the
constraints are transformed into a format that can be
easily converted into R1CS constraints.

• Witness Generator: Before executing the program and
generating the proof, the code must be given a valid
assignment of input variables. The witness generator
takes the valid inputs, interprets the flattened code and
generates the witness.

• Circuit Importer: Sometimes, flattened code is hand
optimised by developers. The circuit importer supports
the functionality of importing the constraints directly into
the Zokrates toolbox.

• Setup and Proof Generator: Setup takes the code and
witnesses generating an evaluation and verification key.
These keys are used in proof generation and verification.

• Contract Generator: According to the verification key, a
solidity contract is generated which has all support for
ECC operations using bn256g2 library and for providing
elliptic curve pairing operations in verifyTx method
which is called to verify the transaction.

Figure 4: Zokrates Components

Zokrates internal processes are summarised in Figure 4.
Zokrates can be used with three proving schemes currently,
namely, PGHR13, Groth16 and GM17. In our application, we
have mainly used PGHR13 and Groth16. Groth16 has some
variations like shorter proof size (only 3 curve points are given
as proof as compared to 8 in PGHR13) which makes it more
efficient.

4. Problem Statement

Hedge Funds are more private investment firms. The fund
manager after collecting the investment from all investors
starts investing it. They use different strategies and statistical
techniques to allocate the amount in different assets. This
allocation is private to a firm and not disclosed by the fund
managers as this might leak the strategies used by them. We
define a set 𝑨 containing all the assets in which a fund
manager makes any investment.

 	

𝑨 = {𝑨𝟏, 𝑨𝟐. 𝑨𝒏}

Such that |𝐴| = 𝑛 ∈ 	
 𝑍.

For any investor, his/her investment is allocated in different
assets in 𝐴. We define these allocations by weight 𝒘𝒊 (fraction
of total investment assigned in a particular asset). These are
also called portfolio weights. An allocation for an investor in
different assets defines their portfolio. Portfolio weights are
kept private by fund manager. Here 𝑾 is the portfolio, 𝒘~ is
the fraction of total investment invested in asset 𝑨𝒊.

 𝑾 = {𝒘𝟏,𝒘𝟐. 𝒘𝒏}

Note that,

h𝒘𝒊

𝒏

𝒊i𝟏

= 𝟏

An example of 3-fund portfolio (having only 3 assets) is:

Table 1: Example 3-Fund Portfolio

Asset(A)

Allocation
(wi)

U.S. ‘Total Market’ Index Fund 0.6
International Stock ‘Total Market’

Index Fund
0.3

Bond ‘Total Market’ Index Fund 0.1

Investors in these funds expect the higher returns but they
also expect that amount of risk should not be too high. For
example, investing too much of an investment amount in an
asset that has a higher risk degree might introduce a conflict of
interest with the investors. An investor might not be
comfortable with too much amount assigned to a single asset.
To estimate the risk for each asset in the market, fund
manager calculates the risk factor 𝒇𝒊. These quantities are
public.

The fund managers need to convince the investor that they are
following the guidelines and not investing too much of their
money into a risky investment. So, the condition defined is
 	

𝑿 ≤ 𝒕 =h𝒘𝒊

𝒏

𝒊i𝟏

𝒇𝒊 ≤ 𝒀

where 𝑿 and	
 𝒀 are the limits specified by investor.
Sometimes risk factors are specified as the correlation between
any two assets such that 𝒇𝒊,𝒋 specifying the risk factor if both
𝑨𝒊 and 𝑨𝒋 are used in high or low proportion.
Correspondingly, non-linear conditions can be defined as

𝑿 ≤ 𝒕 =h𝒘𝒊𝒘𝒋

𝒏

𝒊i𝟏

𝒇𝒊,𝒋 ≤ 𝒀

The	
 JBBA	
 	
 |	
 	
 Volume	
 4	
 |	
 	
 Issue	
 1	
 	
 |	
 	
 2021	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Published	
 Open	
 Access	
 under	
 the	
 CC-­‐‑BY	
 4.0	
 Licence	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

6	

Sometimes, the investor also wants portfolio weights not to
exceed a certain quantity for a single asset. This gives us the
following (individual condition):

∀𝒊 ∈ [𝟏. . . 𝒏]	
 	
 	
 	
 	
 𝒘𝒊 ≤ 𝒉	
 	
 	
 	
 	

where 𝒉 is the individual risk threshold for each asset.

5. Protocol Workflow

In this section, we present a protocol to be used by the fund
manager and investors that allows investors to be convinced
that fund managers are behaving properly. After that, we
discuss some implementation details.

5.1 Participants

• Fund Manager/Prover: Fund Manager needs to follow

the protocol to convince the investor of specified
conditions. (Or the Financial body may employ an
auditor to accomplish this task of proving.)

• Investor/Verifier: Investors will give the conditions or
agree upon predefined conditions, participate in the
protocol and wait for the prover to convince him/her.

• Government Regulatory Body: Regulatory Body
provides all the necessary guidelines that need to be
followed by the fund manager/prover to avoid any
conflict of interest with the investors and ensure
transparency in some way.

5.2 Protocol

There are two phases in this protocol. Initial Phase and Use
Phase.

5.2.1. Initial Phase

i. The fund manager will publish the details of portfolio

characteristics including the universe of assets(A), risk
factors(F) and the public key to be used for convincing
the verifier. Investors will only invest if they agree upon
these points.

ii. Fund Manager deploys Record contract and publishes
the contract address and ABI.

iii. Investors register themselves on Record smart contract
and send the obtained ID to the Fund Manager on a
secured private channel confirming their participation.

5.2.2. Use Phase

i. Investors will compile the DSL specifying all conditions,

the public key of the prover and export the verification
smart contract by specifying their constraints.

ii. Investors deploy the contract on the blockchain, set the
contract address and proving key hash on the Record
smart contract.

iii. Investors can also provide their custom conditions and
limits if agreed by the fund manager initially(optional).

iv. The prover/fund manager will compile the imposed DSL
and make sure that the bytecode matches with the smart
contract deployed. Prover, then computes the witnesses
generating the proof in JSON format using their private
key and proving key shared by the investor.

v. The prover will upload the proof as JSON and call the
verifyTx method on the smart contract.

vi. Verifier will watch for Success Event on the smart
contract deployed to get convinced that all the conditions
are satisfied, and that proof was generated by the fund
manager only. If the event is not triggered, investor can
report to the regulatory body.

Figure 5 gives a basic illustration of the protocol.

Figure 5: Protocol between Fund Manager and Investor

5.3 Implementation

The record contract deployed by the Fund Manager is written
in pure Solidity. Full code can be found in Appendix A. The
contract has three methods.

• Register (): This method is called by investors in Initial

Phase. It generates a unique ID for each investor
incrementally, stores the id in the mapping with the
investor address and returns the ID.

• Set (): This method is also called by an investor in Use
Phase to set the Verifier address and proving key for
them. It also verifies that only investors should be able to
call this method for themselves.

• Get (): This method is called by the Fund Manager in
Use Phase. It returns the Verifier address and proving
key for a given Investor ID. It also verifies that only the
fund manager(owner) should be able to call this method.

The DSL for Zokrates is prewritten and contains values like the
public key of the fund manager, risk factors and so on. Values
like X, Y and h are injected by the investor before compiling. As
proving key is very large, storing it on the smart contract is not
viable, so investor first uploads the key file on IPFS and stores
the obtained IPFS hash on Record Contract. The prover then
retrieves it by the given hash. There are n+1 private arguments
for n portfolio weights. One input is the private key generated

The	
 JBBA	
 	
 |	
 	
 Volume	
 4	
 |	
 	
 Issue	
 1	
 	
 |	
 	
 2021	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Published	
 Open	
 Access	
 under	
 the	
 CC-­‐‑BY	
 4.0	
 Licence	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

7	

from BabyJubJub Curve. ECC library provides us with
cryptographic support with Edwards Curve (embedded curve in
Zokrates) which fits well within the context of Zokrates.

After compiling, constraints are converted to QAP and finally
exported to Solidity smart contract. This contract is deployed
on Ropsten Testnet by the investor sharing contract address
and key hash on Record Smart Contract. The Fund Manager
gets the contract address from the Record Contract. The
Record Contract is compiled such that only the fund manager
(owner) can get this data of investor and nobody else other
than the investor can set their details like contract address etc.
After getting the address, the fund manager computes the
witnesses and generates the proof in the form of JSON which
is used directly to call verifyTx function.

6. Evaluation and Results

In this section, we analyse and evaluate the processes involved
in our protocol. We divide our evaluation into two parts: (1)
On-chain verification and (2) off-chain processes like
generating keys, generating proof, etc.

6.1 Verification on-chain

The most significant part of the protocol is on-chain
verification. We performed our testing on Ropsten Testnet. As
verifyTx method is dependent on proof and the number of
public inputs, verification will take constant time in our
application irrespective of the size of the asset list. Therefore,
even with many constraints in our application, verification will
always be efficient. We compared the verification for two
protocols, PGHR13 and Groth16. As in Groth16, proof size is
smaller as there are only three elliptic curve points, we found
that Groth16 performance is better than PGHR13 with ≈
0.2	
 million gas used in Groth16 as compared to ≈ 0.5	
 million
in PGHR13. Also, in deployment, gas used by Groth16 is ≈
0.9	
 million whereas, in PGHR13, it is ≈ 1.4	
 million. These
values are the average of 20 transactions on Ropsten Network.

6.2 Off-chain Processes

Off-chain processes include compilation, key generation,
exporting the verifier, computing witnesses and proof
generation. PGHR13 scheme in Zokrates uses libsnark as its
backend. Compilation and exporting the verifier are the core
Zokrates processes while generating keys and proofs are done
by libsnark in its components. First, we tested these steps
using PGHR13 proving scheme on Zokrates and obtained the
constraint system data for each number of assets.

Table 2: Constraints System Data in Zokrates
Assets

Constraints

Inputs(Private
/Public) #

Variables

10 17892 11 16005
20 29602 21 26144
50 64732 51 56565
100 123282 101 107265
200 240382 201 208665

Then to measure performance, we run a profiling routine for
key-generation and proof generation on PGHR13 proving
scheme using libsnark as given in [29] with the data obtained.
This layout uses a dense synthetic R1CS structure, so all these
results are the upper bound. For other processes like
compilation, exporting the smart contract, and computing
witnesses, we used time command on Linux Machine. Below
is the data we obtained.

These results are calculated by taking the average runtime of 3
execution rounds for each step. From these results, we found
that setup is the bottleneck for the verifier and takes most of
the time.

Table 3: Profiling Results for Verifier
Assets

Compile Time(X)

(s)
Setup(Y) Export-­‐

Verifier(Z)
10 0.069 6.816 0.009
20 1.427 11.342 0.011
50 2.519 20.600 0.063
100 4.961 51.536 0.509
200 7.717 97.342 0.143

Table 4: Profiling Results for Prover
Assets

Compile Time(X)

(s)
Compute-­‐
Witness(Y)

Proof-­‐
Gen(Z)

10 0.042 0.395 2.256
20 1.347 0.485 3.399
50 2.532 0.787 6.202
100 4.942 1.132 11.572
200 7.943 2.279 22.302

From the graph in Figure 6, we conclude that for a few
hundred assets, the verifier can complete execution in
approximately 8–9 minutes and the whole process can be
completed in about a minute for a single investor.

Figure 6: Total Overhead for Prover and Verifier

7. Conclusion

The protocol presented provides us with the ability to use
zero-knowledge proofs in the financial regulatory system.
Based on our implementation and analysis, we conclude that
using Zokrates (or SNARKS) offers us a variety of ways to

The	
 JBBA	
 	
 |	
 	
 Volume	
 4	
 |	
 	
 Issue	
 1	
 	
 |	
 	
 2021	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Published	
 Open	
 Access	
 under	
 the	
 CC-­‐‑BY	
 4.0	
 Licence	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

8	

come up with the compliance system. Using this, a lot of real-
world bottlenecks like paper trails and account-keeping can be
avoided. Also, as every financial organisation must be
compliant with a regulatory body, such as SEC, this use-case
serves as an introductory solution to many regulation
environments.

7.1 Scope for Future Work

In our implementation, we have made some assumptions
that can be handled to improve the application and explore
some other opportunities. For example, we assumed the
precision of up to 10 bits for weight quantities. This can be
further extended if the number of assets is lower in number
such that the resulting risk measure can fit well in Zokrates
field type. Also, we can try other types of conditions which
might be important from the financial point of view. In
addition to this, we can also come up with a different
protocol that uses other proving schemes like Bulletproofs
integrated with some refereed delegation approach to make
the verification cheaper.

Appendix A

A.1 Record Contract

pragma solidity >=0.4.0 <0.7.0;
pragma experimental ABIEncoderV2;
contract Record {
uint ID;
address owner;
struct cust_type {
address addr;
bytes key;
}

mapping (uint => address) ad;
mapping (uint => cust_type) dta;
constructor () public {
owner = msg. sender;
ID = 0;

}
function register () public returns (uint){
uint t = ID;
ID=ID +1;
ad[t]= msg. sender;
return t;
}
function set (uint id, address sa, bytes memory ev_key) public {
assert (ad [id]== msg. sender);
dta [id]= cust_type ({
addr: sa,
key: ev_key
});
}
function get (uint id) public view returns (cust_type memory) {
assert (msg. sender == owner);
cust_type memory c = cust_type ({
addr: dta [id]. addr,
key: dta [id]. key
});
return c;
}
}

Competing Interests:
None declared.

Ethical approval:
Not applicable.

Author’s contribution:
Komal Kalra is the main author responsible for writing the manuscript, collecting data,
proofreading, etc.

Funding:
National Blockchain Project Funds by National Security Council Secretariat, Government of
India.

Acknowledgements:
Not applicable.

References:

[1] (Last Amended, 2017). SEBI (Alternative Investment
Funds Regulations,2012. https://www.sebi.gov.in/
legal/regulations/apr-2017/sebi-alternative-investment-
funds-regulations-2012-last-amended-on-march-6-2017-
_34694.html.

[2] Benarroch, D. (2019). Diving into the zk-SNARKs
Setup Phase. https://medium.com/qed-it/diving-into-
the-snarks-setup-phase-b7660242a0d7.

[3] Blog (2004). Witness-Indistinguishability. https://www.
isical.ac.in/~rcbose/internship/lectures2016/rt02feiges
hamir.pdf.

[4] Blog (2018). Decentralized Applications dApps.
http://blockchainhub.net/decentralized-applications-
dapps/.

[5] Bootle, J., Cerulli, A., Chaidos, P., Groth, J., and Petit, C.
(2016). Efficient zero-knowledge arguments for
arithmetic circuits in the discrete log setting. In Fischlin,
M. and Coron, J.-S., editors, Advances in Cryptology
{EUROCRYPT 2016, pages 327-357, Berlin,
Heidelberg. Springer Berlin Heidelberg.

[6] Buterin, V. (2016). snarks. https://medium.com/
@VitalikButerin/quadratic-arithmetic-programs-from-
zero-to-hero-f6d558cea649.

[7] Buterin, V. (2017a). Exploring Elliptic Curve Pairings.
https://medium.com/@VitalikButerin/exploring-
elliptic-curve-pairings-c73c1864e627.

[8] Buterin, V. (2017b). Zk-SNARKs: Under the Hood.
https://medium.com/@VitalikButerin/zk-snarks-
under-the-hood-b33151a013f6.

[9] Bunz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P.,
and Maxwell, G. (2018). Bulletproofs: Short proofs for
con_dential transactions and more. In 2018
IEEE.Symposium on Security and Privacy (SP), pages
315-334.

[10] Math.columbia.edu. 2021. [online] Available at: <http://
www.math.columbia.edu/~rf/extensionfields>.

[11] Lexology.com. 2021. Maintaining confidentiality in fund
documents: a realistic expectation? | Lexology. Available at:
<https://www.lexology.com/library/detail.aspx?g=49d8

The	
 JBBA	
 	
 |	
 	
 Volume	
 4	
 |	
 	
 Issue	
 1	
 	
 |	
 	
 2021	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Published	
 Open	
 Access	
 under	
 the	
 CC-­‐‑BY	
 4.0	
 Licence	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

9	

8904-352d-4ad7-8a33-a9534443158a#:~:text=Fund%2
0managers%20are%20typically%20keen,they%20disclos
e%20to%20potential%20investors.&text=Hedge%20fun
d%20managers%20and%20others,be%20reassured%20b
y%20the%20result>

[12] Deml, S. (2019). Efficient ECC in zkSNARKs using
ZoKrates. https://medium.com/zokrates/efficient-ecc-
in-zksnarks-using-zokrates-bd9ae37b8186.

[13] Eberhardt, J. and Tai, S. (2018). Zokrates - scalable
privacy-preserving off-chain computations. In 2018
IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData), pages 1084-1091.

[14] Ethereum (2019). Learn about Ethereum.
https://ethereum.org/learn/.

[15] Feige, U. and Shamir, A. (1990). Witness
indistinguishable and witness hiding protocols. In
Proceedings of the Twenty-Second Annual ACM
Symposium on Theory of Computing, STOC '90, page
416{426, New York, NY, USA. Association for
Computing Machinery.

[16] Flood, M. D., Katz, J., Ong, S. J. J., and Smith, A.
(2013). Cryptography and the economics of supervisory
information: Balancing transparency and confidentiality.
Microeconomics: Asymmetric Private Information
eJournal.

[17] Fondation, Z. (2017). zk-snarks. https://z.cash/
technology/zksnarks/

[18] Gowravaram, N. R. (2018). Zero Knowledge Proofs and
Applications to Financial Regulation.
http://nrs.harvard.edu/urn-3:HUL.InstRepos:38811528

[19] Green, M. (2014). Zero Knowledge Proofs: An
illustrated primer. https://blog.cryptographyengineering.
com/2014/11/27/zero-knowledge-proofs-illustrated-
primer/.

[20] Green, M. (2017). Zero Knowledge Proofs: An
illustrated primer2. https://blog.cryptographyenginee
ring.com/2017/01/21/zero-knowledge-proofs-an-
illustrated-primer-part-2/.

[21] Groth, J. (2016). On the size of pairing-based non-
interactive arguments. In Fischlin, M. and Coron, J.-S.,
editors, Advances in Cryptology {EUROCRYPT 2016,
pages 305-326, Berlin, Heidelberg. Springer Berlin
Heidelberg.

[22] JonathanKatz (2004). Witness-Indistinguishability.
http://www.cs.umd.edu/~jkatz/gradcrypto2/NOTES/l
ecture21.pdf.

[23] Lutkebohle, I. (2008). BWorld Robot Control Software.
http://aiweb.techfak.uni-bielefeld.de/content/bworld-
robot-control-software/ [Online; accessed 19-July-2008].

[24] matter lab (2020). Awesome zero knowledge proofs
(zkp). https://github.com/matter-labs/awesome-zero-
knowledge-proofs.

[25] Menezes, A. (2005). An introduction to pairing-based
cryptography.

[26] Parno, B., Howell, J., Gentry, C., and Raykova, M.
(2013). Pinocchio: Nearly practical verifiable

computation. In 2013 IEEE Symposium on Security and
Privacy, pages 238-252.

[27] Pass, R. and Venkitasubramaniam, M. (2010). Private
coins versus public coins in zero-knowledge proof
systems. In Micciancio, D., editor, Theory of
Cryptography, pages 588-605, Berlin, Heidelberg.
Springer Berlin Heidelberg.

[28] scipr lab (2020a). C++ library for zkSNARKs.
https://github.com/scipr-lab/libsnark.

[29] scipr lab (2020b). Profiling Libsnark. https://github.
com/sciprlab/libsnark/tree/master/libsnark/zk_proof_
systems/ppzksnark.

[30] Stanford (2014). Finite Fields. https://web.stanford.
edu/class/ee392d/Chap7.pdf.

[31] Szydlo, M. (2005). Risk assurance for hedge funds using
zero knowledge proofs. In Patrick, A. S. and Yung, M.,
editors, Financial Cryptography and Data Security, pages
156-171, Berlin, Heidelberg. Springer Berlin Heidelberg.

[32] Teutsch, J., Straka, M., and Boneh, D. (2019).
Retrofitting a two-way peg between blockchains.

[33] Zokrates (2019). Zokrates. https://github.com/
Zokrates/ZoKrates.

[34] SEC.gov | Hedge Funds – A New Era of Transparency
and Openness

[35] S Goldwasser, S Micali, and C Rackoff. 1985. The
knowledge complexity of interactive proof-systems. In
Proceedings of the seventeenth annual ACM symposium
on Theory of computing (STOC '85). Association for
Computing Machinery, New York, NY, USA, 291–304.
DOI: https://doi.org/10.1145/22145.22178

[36] Damgård, Ivan & Nielsen, Jesper. (2008). Commitment
Schemes and Zero-Knowledge Protocols (2007). Lecture
Notes in Computer Science - LNCS.

[37] NTL: A Library for doing Number Theory (libntl.org)
[38] https://www.sec.gov/news/statement/aguilar-effective-

regulatory-oversight-and-investor-protection.html

