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Abstract 
The Ethereum blockchain is one of the main public platforms to run smart contracts and enable decentralised applications. Since data 
stored in a blockchain is considered immutable, smart contracts deployed in Ethereum are regarded as tamper-proof and therefore offer 
strong protection against attacks aiming at tinkering with the execution flow of an application. Yet, like any other software, a smart 
contract needs to be maintained over time to fix bugs or add new features. Deploying every updated version as a brand-new smart 
contract in Ethereum leads to problems such as migrating the contract state from the old version and enabling clients to point to the 
new version in a timely fashion. The OpenZeppelin framework addresses this limitation by providing libraries that enable the 
deployment of upgradeable smart contracts. This is achieved by relying on proxies that act as intermediaries between clients and smart 
contracts, allowing the latter to be updated transparently. In this paper, we present the upgradeable smart contract patterns supported 
by OpenZeppelin and compare them in terms of security, cost, and performance. To show this paradigm’s prevalence in Ethereum, we 
also analyse the usage of OpenZeppelin Upgradeable smart contracts over the last four years. 
 
Keywords: Smart Contract, Immutability, Proxy, Upgradeable, Patterns, OpenZeppelin 
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1 Introduction 
 
The upgraded smart contract (USC), designed with the 
OpenZeppelin technique, is used to reserve the contract state 
and redirect calls to the implementation contract (IC). In 
addition, it upgrades the IC address when it requires a new 
version. In this technique's design, the proxy stores the state of 
the IC and maps any new version to the same state [12]. The 
upgraded technique is not preventing the known attacks 
against smart contracts. The purpose of designing the USC is 
to ensure the state cannot be lost and will be mapped to a new 
version of IC. 

OpenZeppelin is a widely used library for writing secure smart 
contracts, and it provides several patterns for implementing 
upgradability [6]. These patterns include TransparentProxy, 
ERC1967, UUPSUpgradeable, and Beacon [6]. The research 
reviews the OpenZeppelin Upgradeable patterns to 
understand how they vary based on gas consumption, security, 
and performance. 

The OpenZeppelin technique of upgrading smart 
contracts was invented in 2017. This technique motivates 
us to analyse the verified smart contract in Etherscan and 
check whether this technique has grown within the last 
four years. 

The paper is organised as follows. Section 2 introduces Ethereum 
and smart contracts, followed by the OpenZeppelin Upgradeable 
technique. Section 3 presents the research methods, while Section 
4 presents the analysis of upgraded patterns and compares them 
based on gas consumption, security, and performance. Section 5 
shows the analysis result of the usage of upgradeable patterns 
over the last four years. Finally, Section 6 summarises our review 
and outlines our future direction. 

2 Background 
2.1 Ethereum and Smart Contract 

Ethereum platform is one of the public blockchain platforms 
introduced by Vitalik Buterin [1] to override the limitations of 
Bitcoin’s scripting language. Unlike Bitcoins, Ethereum 
innovated to support all loops as it is full of Turing 
completeness [10]. Moreover, the Ethereum platform is the 
most popular for deploying contract-based applications in 
several contexts, including financial services, insurance, 
education, healthcare, and cryptocurrencies. 

A smart contract is designed to verify and enforce legal 
contract negotiation. Once it is deployed in the blockchain, no 
one can change the code [2]. It is executed and verified by 
Ethereum Virtual Machine Environment (EVM), built within 
all decentralised nodes in the Ethereum blockchain. The 
immutability characteristic of the smart contract made it a 
trusted application. 
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2.2 OpenZeppelin Upgradeable Technique 

OpenZeppelin is a popular open-source framework for building 
secure, modular, and reusable smart contracts on the Ethereum 
platform [11]. The most important approach is implementing 
upgradeable smart contracts on the Ethereum platform. Their 
approach utilises a proxy, allowing developers to deploy a 
contract as an intermediary between a user and the 
implementation contract [12]. The proxy will store the state of the 
implementation contract to reserve the state when upgrading the 
IC to a new version. The upgrade process is done by invoking the 
UpgradeTo( ) function by the EOA, but if the IC had the same 
function, this would cause a problem known as function clashing 
[7]. This issue can occur because each function in a smart contract 
is identified by four-byte at the bytecode level [7] and can not be 
tracked by the Solidity compiler because we have two different 
contracts: proxy and IC. To solve this issue, OpenZeppelin has 
designed a Transparent Proxy pattern [6] with a specific 
ProxyAdmin contract which plays the admin role. In addition, the 
invocation of any function will be delegated to the suitable 
contract according to the caller’s address [7]. The ProxyAdmin 
will be the only one that have the right to invoke the 
UpgradeTo( ) function of the proxy. 

3 Methodology 

The methodology proposed in this research to analyse the 
upgradeable patterns involves the following steps: 

1. Data Collection: We obtained the smart contract 
address and creation timestamp from the Kaggle [4] 
dataset, which contains live data of the Ethereum 
blockchain. Then, the data was categorised based on 
the creation timestamp from 2019 to 2022. 

2. Source Code Crawling: We crawled source codes 
using the tool provided by [5] and edited them 
according to our needs by using the contract 
addresses from the previous step as input for our 
script. We were able to crawl different contracts 
categorised by years. 

3. Data Analysis: We classified the dataset according to 
OpenZeppelin Upgradeable patterns (e.g., 
TransparentProxy, UUPSUpgradeable, ERC1967, and 
Beacon). We used Python panda’s library to classify 
and calculate summary statistics for each category. 
The result of this step will be discussed and is present 
in Section 5. 

 
4 Analysis of OpenZeppelin Upgradeable Patterns 
4.1 Upgraded Patterns 

The upgradability of a smart contract is done by creating a 
new version of the deployed contract. The new version is 
designed to overcome the issues which exist in the old version 
or by adding new features according to the business needs. 
The state of the old version will be mapped to the new 
version. However, the upgradability cannot prevent the smart 
contract from potential adversaries such as a reentrancy attack. 

The OpenZeppelin technique has proposed different patterns. 
Each pattern is linked with a different contract to achieve its 
purpose. The Proxy contract is represented as the central 
core of the upgradeable contract with all patterns because it is 
the core of implementing the delegation functionality [6]. The 
remaining patterns are designed with different functionalities. 

4.1.1 Transparent Proxy 

The Transparent Proxy contract is designed to avoid the 
function clashing and ensure that only the admin can call the 
upgrade function. The following contracts are the main 
contracts for implementing this pattern. Figure 1 presents the 
deploying Tx of this pattern, where it clearly shows how the 
three contracts are created and attached to it is code and 
storage. The storage of TransparentUpgradeable Proxy is 
responsible for managing the state of itself and IC [6]. 
Moreover, the storage of the IC will be useless as IC is 
responsible for executing the delegated function and sending 
the output back to the TransparentUpgradeable contract. 

 
Figure 1. Process of deploying the TransparentProxy pattern 

- TransparentUpgradeableProxy is designed to 
manage the calls from the end-user to the IC by 
checking the caller’s identity [8]. In case the caller is 
the admin, his call will only be delegated to the IC for 
execution if the caller is an external account. 

- ProxyAdmin is designed as an admin of 
TransparentUpgradeableProxy. It only has the right 
to access the admin functions, which are used for 
upgrading the proxy or changing the contract owner 
[8]. For that, the ProxyAdmin is always assigned to a 
dedicated account. 



 
 

The JBBA  |  Volume 6 |  Issue 1  |  2023                                 Published Open Access under the CC-BY 4.0 Licence 

                                                                                                                                               

3 

 

In case the external accounts invoke a function in IC, 
the TransaparentUpgradeable Proxy checks whether 
this call is to the admin or IC. The proxy will be 
delegated the request to the IC if it is valid. The proxy 
will update the state of IC contract once the request is 
executed successfully and the output is forwarded to the 
external accounts. Figure 2 illustrates how the proxy 
manged the IC state. The proxy tracks the state of IC 
because all invocation to IC is only done through the 
proxy. 

 

 
Figure 2. Invoking process of IC functions 

Upgrading the IC to a new version requires deploying the 
new version first and upgrading the address in proxy storage 
via ProxyAdmin contract. It is clearly shown in Figure 3 
how the upgrade function is executed by the 
TransparentUpgradeable Proxy once the ProxyAdmin 
validates the identity of the caller. 

 

 
Figure 3. The Upgrade process of Upgrade function 

4.1.2 ERC1967 

ERC1967Proxy is designed based on EIP1967 [2], which is 
proposed to overcome any clashes that might occur with the 
storage layout of IC address. This proxy is not upgradeable 
by default. It is inherited into the Proxy contract, which was 
designed as the core for delegating the functions. The 
function responsible for declaring the storage slot of the IC 
address showed in Snapshot 1. The function is defined as a 
constructer because it will be executed once the contract is 
deployed. In addition, the variable of IC address can be 
changed. Figure 4 illustrates the contract created by 

deploying the ERC1967 pattern. It shows how 
theERC1967Proxy is inherited within the proxy as one 
contract because it helps the proxy guarantee that the 
ERC1967Upgrade is designed along with ERC1967Proxy to 
“provide the getters and events which emit the upgrade 
functions of EIP1967 slots” [2]. 

 

Figure 4. Process of deploying the ERC1967 pattern 

The message invocation process using this pattern is similar to 
the previous pattern in Section 4.1.1. In this pattern, the proxy 
will delegate the message to IC. Then IC executes the targeted 
function and returns the output to a proxy. Finally, the proxy 
will delegate the output to the end-user and update the state of 
IC. 

 

 
 
 
 
 
 
 
 
 

 In the case of invoking the upgrade function, the transactions 
will be executed differently. The owner initiates the invocation 
after creating the new contract version and getting IC address. 
The IC address will be upgraded by the ERC1967Upgrade, 
where it executes the _getImplemntation(old_ICaddress) 
function followed by calling the 
_UpgradeTo(newIC_address) [6]. The execution of those 
functions is emitting the old address to the new address, as 
shown in Figure 5. 

constructor(address _logic, bytes memory _data) 
payable { assert(_IMPLEMENTATION_SLOT == 
bytes32(uint256(keccak256("eip1967.proxy.implemen
tation")) - 1)); 

_upgradeToAndCall(_logic, _data, false);} 

 Snapshot 1. The function of identifying the storage slot of IC 
address 
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Figure 5. The process of Upgrade using ERC1967 pattern 

4.1.3 Beacon 

 This pattern is designed to call the upgrade function of 
different ICs through multiple proxies. It consists of three 
contracts, as detailed below. 

- BeaconProxy is implemented as a proxy designed to 
retrieve the IC addresses for each call initialised by 
the UpgradeableBeacon contract [6]. 

- IBeacon is designed as the interface of BeaconProxy, 
as it is responsible for storing the IC addresses. The 
BeaconProxy calls the implementation() function 
[6] and checks whether the return value is a contract 
or not. Then the return address will be used to 
delegate the call of the target. 

- UpgradeableBeacon acts as an admin who has the 
right to upgrade the BeaconProxy. The upgrade 
process is done by calling the IBeacon contract, 
which holds all IC addresses, and the linked proxies 
will be upgraded automatically [6]. 

Figure 6 illustrates the deployment process of Beacon patterns, 
where four different contracts are created. This pattern is 
similar to ERC1967 during the upgrade process. Figure 5 as 
the upgrade IC address to the new version is done through in 
the IBeacon contract as the BeaconProxy is retrieving the 
address of IC from IBeacon. However, the interaction 
between this contract and the end-user is different. In the case 
of invoking a function in IC while using the Beacon pattern, 
the call goes through two transactions before being executed 
by the IC. First, the BeaconProxy will receive the call and 
retrieve the IC address from the IBeacon to delegate the call. 
Then, once the BeaconProxy gets the IC address it will 
delegate the call to the IC for executing the function, as shown 
in Figure 7. 

 
 

Figure 6. Process of deploying the Beacon pattern 

 
 
Figure 7. Process of interaction with the Beacon pattern 

4.1.4 UUPSUpgradeable 
 This pattern is considered an upgradability mechanism built 
within the IC contract. It is implemented by using 
ERC1967Proxy [6]. In this pattern, the data and contract logic 
are designed as one contract, as illustrated in Figure 8. The 
invocation of any function is done directly between the end-
user and the contract. However, the upgrade process to a new 
version will be authorised first by executing the function 
_authorisedUpgrade(Owner Address) [6]. 

All OpenZeppelin Upgradeable patterns are designed to 
preserve the immutability of a contract by holding the 
implementation contract state within a proxy contract. This 
technique allows the implementation contract to be upgraded 
without losing the contract state. Some patterns, such as the 
TransparentProxy pattern, are designed to prevent 
authorisation issues by allowing a fixed admin to upgrade the 
implementation contract. These patterns can be used to ensure 
the contract remains upgradeable and secure. For example, the 
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proxy contract can be deployed using the TransparentProxy 
pattern, which allows the admin to upgrade the 
implementation contract as needed. In addition, using the 
ERC1967 by some patterns is also helpful in avoiding the 
proxy selector clashing issue. 

 
 

Figure 8. Process of deploying the UUPSUpgradeable pattern 

4.2 Comparison of Upgradeable Patterns 
4.2.1 Gas Consumption (𝐠𝐜) 

The contract transactions executed within the EVM and the 
cost gas consumption (𝑪𝒈𝒄) for this operation are calculated 
according to the transaction type. The gas price is changed 
rapidly according to the network usage,1 where the amount of 
consumed gas is a fixed value identified within Appendix G[3]. 
The (𝐠𝐜)	of the initial transaction of creating a smart contract 
is 𝟏. 𝟐𝟖𝑴	𝒈𝒘𝒆𝒊 if the gas price is 𝟒𝟎	𝑾𝒆𝒊,	where the 
estimated gas consumed is 𝟑𝟐𝟎𝟎𝟎	𝒖𝒏𝒊𝒕𝒔	𝒐𝒇	𝒈𝒂𝒔. The 
research aims to determine the (𝒈𝒄) for different types of 
transactions of different upgradeable patterns. 

o (𝒈𝒄) of Deployment 𝑻𝒙 

Since the deployment of an upgradeable contract creates more 
than two SCs, then the (𝒈𝒄) depends on the number of 
transactions that created new contracts. 
For example, in the case of implementing the 
TransparentProxy pattern, three SCs will be created 
according to Figure 1, and the gas consumption for three 
create transactions is 32,000 ∗ 3. Therefore, Equation (1) can 
be used to calculate the (𝒈𝒄) of the creation transaction where 
(n) is present in the number of contracts created during the 
deployment process. 
It is identified from Figure 8 that deploying the 
UUPSUpgradeable patterns is cheaper than the other patterns. 

 
1 https://etherscan.io/gastracker. 

	32,000 ∗ 𝑛, 𝑛	 ∈ ℕ	𝑎𝑛𝑑	𝑛 ≥ 2															(1) 

o (𝒈𝒄) of Normal 𝑻𝒙 

The 𝐶𝐴𝐿𝐿	𝑎𝑛𝑑	𝐷𝐸𝐿𝐸𝐺𝐴𝑇𝐸𝐶𝐴𝐿𝐿 are categorised as normal 
𝑇$ because any 𝐼𝐶 functions are invoked through these 
transaction types. We assume the end-user has invoked the 𝐼𝐶 
function, which will be delegated to 𝐼𝐶 through 𝑃𝑥 as a 
𝐷𝐸𝐿𝐸𝐺𝐴𝑇𝐸𝐶𝐴𝐿𝐿 transaction. The (𝒈𝒄) of the entire process 
from the end-user to 𝐼𝐶 is calculated as four different 
transactions. According to Appendix G[3] gas consumption of 
every transaction costs 21,000, then the total gas 
consumption is calculated as in Equation (2). The CALL and 
DELEGATE CALL have the same value of (𝒈𝒄) because 
they are treated as a transaction. 

𝑔𝑐%&'' + 𝑔𝑐()')*&+)%&'' +⋯											(2) 

All upgradeable patterns have the same number of 
transactions except UUPSUpgradeable as the proxy and IC 
combined as one smart contract. For that, it has less (𝒈𝒄) 
compared with the remaining patterns. 

o (𝒈𝒄) of Upgrade 𝑻𝒙 

The upgrade 𝑇$ is a 𝑪𝑨𝑳𝑳 transaction because the upgrade is 
the name of the function built within the 𝑷𝒓𝒐𝒙𝒚𝑨𝒅𝒎𝒊𝒏 
contract. The 𝐸𝑂𝐴 invokes this function through 
𝑷𝒓𝒐𝒙𝒚𝑨𝒅𝒎𝒊𝒏 to upgrade the 𝐼𝐶 address. The (𝒈𝒄) is 
determined by calculating the 𝑪𝑹𝑬𝑨𝑻𝑬 transaction of the 
new version with the 𝑪𝑨𝑳𝑳 transaction of upgrading 𝐼𝐶 
address. Figure 5 illustrates the number of transactions that 
can be called to execute the upgrade function. 

 
𝑔𝑐%&'' + 𝑔𝑐,-./0.   (3) 

The gas consumption for different contract transactions 
can vary depending on the transaction type and the contract 
code’s complexity. For example, the deployment 
transactions consume a fixed amount of gas because this 
transaction only involves creating the contract and does not 
execute any of its functions. On the other hand, invoking a 
function in IC requires multiple transactions to be executed 
and complete the call. It includes an average transaction to 
initiate the call, internal transactions to execute the 
function, and a final transaction to return the result. 
Therefore, the gas consumption for these transactions can 
be more expensive than the deployment transaction. 

Additionally, performing the upgrade to an IC, the owner 
must initiate a transaction to update the proxy contract by 
changing the address of the old version to the new version. 
This transaction consumes gas, as does the deployment 
transaction to deploy the new implementation contract. 
Therefore, the total gas consumption for an upgrade depends 
on the complexity of the new implementation contract and the 
number of transactions required to complete the upgrade. 
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4.2.2 Performance 

In our research, we have conducted a qualitative analysis 
method to evaluate the performance of different patterns and 
perform the comparison between them. The evaluation 
estimates the number of transaction rounds required to 
execute the target function within the proxy patterns or IC. 
The comparison will be based on transaction types as it will 
cover in the following sections. 

o Performance of Deployment 𝑻𝒙 

 The regular deploymentTx of deploying contract requires 
one transaction, called creation Tx. In the case of deploying 
the different patterns, such as ERC1967 pattern, it also 
required three rounds of transactions, as it initialised three 
different creation transactions. It is responsible for creating 
the ERC1967Proxy, ERC1967Upgrade, and IC. On the 
other hand, deploying the Beacon pattern required three 
rounds of creation transactions, as shown in Figure 6. 
Moreover, deploying the UUPSUpgradeable contract required 
two rounds of creation transactions as the UUPSUpgradeable 
is built-in with the IC and needs ERC1967Proxy to avoid the 
proxy selector clashing issue. 

 The performance of this type of transaction can be estimated 
by counting the number of rounds required to create each 
contract pattern successfully. However, each created contract 
is created in an individual block because once the IC is 
created, the address will be stored within the proxy pattern and 
used later as input to delegate the end-user invocation. For 
that, by using our analysis method, we assume that 
UUPSUpgradeable patterns have high performance as it 
requires only two rounds of creation transactions during the 
deployment process. 

o Performance of Normal 𝑻𝒙 

 The normal Tx is the call initiated by the end-user to IC to 
execute the targeted function. In the case of executing a 
function of IC via proxy, it required six transactions. Those 
transactions represent different types of calls, starting with the 
call from the end-user to IC through the proxy. Then, once 
the IC receives it, it will be executed and delegated to the end-
user. Finally, the proxy completes the final transaction to 
update the contract state once the process is done successfully. 
The internal transactions consist of three transactions which 
are linked with the original transaction. Once the output from 
internal transactions is delegated to the end-user, the six 
transactions will be added to the same block with the same 
hash value. Figure 5 shows the number of transactions 
performed to execute a function in the ERC1967 pattern. 

As the proxy plays an essential part in all patterns, we estimate 
that ERC1967 and Transparent Proxy patterns have the same 
number of transactions to execute the targeted function. 
Therefore, the UUPSUpgradeable pattern has the best 

performance as the execution of the function is done within 
the same contract. 

Our method focuses on the number of transactions initiated 
to be executed. Other metrics can be considered 
experimentally to know which patterns perform better than 
others. We aim to evaluate the performance experimentally by 
measuring throughput, latency, and code complexity which 
can give us an accurate result. 

o Performance of Upgrade 𝑻𝒙 

Upgraded smart contracts involve the contract owner 
changing the address of IC from the old version to the new 
version. Figure 5 represents the upgrade process of the 
ERC1967 pattern, as the number of transactions performed is 
equal to the number of transactions performed by the Beacon 
pattern. We assume that both patterns perform similarly 
during the upgrade process. 

In the case upgrade process done by the TransparentProxy, 
the owner calls the upgrade function similarly as the end-user 
invokes a function from IC. For that, we assumed that the 
number of transactions required for upgrade Tx is similar to 
normal Tx. Therefore, we assume that UUPSUpgradeable is 
best performed, followed by the TransparentProxy pattern, 
and the remaining patterns are performed slower. 

4.2.3 Security 

The design of an upgradeable contract does not prevent the 
known attack of smart contracts, such as reentrancy, because the 
main idea of an upgradeable contract is to ensure the immutability 
concept of blockchain by reserving the contract state. 

In this section, the research aims to discover the security 
vulnerabilities that affect upgradeable patterns. First, we have 
used some datasets from Section 3. Then, we use the Slither 
[1] tool to analyse the source codes of different upgradeable 
patterns. Figure 9 shows the result of different affected 
vulnerabilities and their impacts on each pattern. 

It shows that 20% of the detected vulnerabilities in Beacon 
and TransparentProxy patterns have an informational 
impact. However, the vulnerabilities categorised as 
informational will not affect the safety of upgradability 
because they do not affect the upgrade functions. On the 
other hand, the ERC1967 pattern is affected by 60% of 
detected vulnerabilities equally divided between the 
informational, low, and medium impacts. For that, the code 
complexity of upgradeable patterns could be one of the main 
metrics that might ERC1967 pattern to be the most affected, 
with 20% of vulnerabilities with medium impact. 

There is no result related to UUPSUpgradeable patterns in 
Figure 9. For that, we need to use another analysis tool in 
future to verify the results. 
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Figure 9. The number of affected vulnerabilities based on 
OpenZeppelin patterns 

Therefore, the good practice to keep the contract safe and 
secure is developing the following mechanisms besides the 
upgradeable contract [9]. 

- Ownable 
This contract module provides an access control 
mechanism and ensures the authorisation of 
upgradeable contracts [9]. It is linked with 
upgradeable contracts, such as Transparent, Beacon, 
and UUPSUpgradeable contracts. The EOA who 
deploys this contract will be the owner by default 
unless he transfers the ownership to another owner 
by invoking the transferOwnership( ) function, 
which is only reachable by the owner. If the 
ProxyAdmin account needs to be changed, it will be 
done with the Ownable contract’s function. 

- ReentrancyGuard 
This contract module is designed to prevent reentrant 
calls to the contract function [9]. It is built with the 
nonReentrant( ) modifier, which fails any call 
execution with a reentrancy pattern. 

 
5 Analyse the Usage of OpenZeppelin Upgradeable 

Smart Contracts Over the Last Four Years 

In this section, we analyse the use of OpenZeppelin 
Upgradeable smart contracts over the last four years. The 
analysis starts by using the dataset which been created from 
Section 3.3. 

 5.1 Result Analysis 

 Figure 10 compares the number of upgradeable patterns and 
how they evolved over the last four years. For example, the 
TransparentProxy pattern’s value increased significantly from 
2019 to 2022, with a value of 5116 in 2019 and a value of 
53,898 in 2022. These changes represent a growth of more 
than 90%. Similarly, the value of the UUPSUpgradeable 
pattern increased from 122 in 2019 to 13,134 in 2022. 

On the other hand, the value of the ERC1967 pattern 
remained relatively constant from 2019 to 2021 but increased 
significantly in 2022. However, the value of the Beacon 
pattern also increased steadily from 2019 to 2022, with a value 
of 9 in 2019 to 229 in 2022. 

Overall, the data show that the Transparent and 
UUPSUpgradeable patterns are the most upgradeable and are 
used between 2019 and 2022. The comparisons discussed 
earlier in this paper could be related. It was clear that 
Transparent patterns have been invented to overcome the 
issue discussed in Section 2.2. In addition, the 
UUPSUpgradeable pattern has better performance and is 
cheaper. The values of the ERC1967 and Beacon patterns 
have remained relatively constant or have increased steadily 
over the four years. This analysis provides empirical results of 
using upgradeable smart contract patterns based on the 
OpenZeppelin technique. 

 
 

 
Figure 10 Number of Upgradeable patterns between 2019 and 
2022 

6 Conclusion and Future Work 

In this paper, we reviewed the OpenZeppelin Upgradeable 
patterns and compared them from different aspects, such as 
cost, performance, and security. We performed some analyses 
to find the vulnerabilities that might affect upgradeable smart 
contract patterns. 

The difference between upgradeable patterns on performance 
and gas consumption is performed based on three 
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transactions: DeploymentTx, NormalTx, and UpgradeTx. 
However, the comparison between upgradeable patterns on 
performance was based on a qualitative analysis. We found 
that the UUPSUpgradeable pattern performs better according 
to the number of transactions completed per round. In the 
case of gas consumption, the gas consumption while using the 
UUPSUpgradeable pattern is cheaper than other patterns. We 
assume that the Beacon pattern also consumes much gas and 
has slow performance according to the number of transactions 
performed during the interaction. Finally, the result analysis 
shows that the use of Transparent Proxy of upgradeable 
patterns has grown significantly over the last four years. 

In future work, we aim to verify the vulnerabilities identified in 
Section 4.2.3 by creating a threat model and identifying 
upgradeable patterns’ security requirements. In addition, we 
will conduct experimental evaluations of the performance of 
the upgradeable patterns. The experimental method will 
involve measuring key metrics such as throughput, latency, 
and code complexity and using these metrics to compare the 
performance of different upgradeable patterns. 
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