
 
 

 
The JBBA  |  Volume 7 |  Issue 1  |  2024                                       Published Open Access under the CC-BY 4.0 Licence 

                                                                                                                                          
 

1 

 

 PEER-Reviewed RESEARCH 
 

 OPEN ACCESS 
                                                                                                                            ISSN Online: 2516-3957 

                                                                                                                       ISSN Print: 2516-3949 
https://doi.org/10.31585/jbba-7-1-(2)2024 

Improving the Trustworthiness of Traceability Data in  
Food Supply Chain Using Blockchain and Trust Model 
Oratile Leteane, Yirsaw Ayalew 
University of Botswana, Gaborone, Botswana 
 
Correspondence: 200808199@ub.ac.bw 
Received: 19 December 2023    Accepted: 15 January 2024   Published: 16 February 2024 
 
Abstract 
The food supply chain is characterised by its complexity and interconnectedness, involving various actors, from farmers to consumers. 
It emphasises the critical importance of maintaining product integrity, safety, and quality throughout the process to meet stringent 
regulatory standards and consumer expectations. However, food supply chain is plagued by challenges such as counterfeiting, quality 
issues, and safety concerns, prompting the adoption of product traceability as a remedy. Current traceability systems (e.g., systems based 
on centralised and EPCIS architectures) aim to capture traceability data from the initial link to the final link in the supply chain, allowing 
for tracing a product from the end consumer back to its origin. Nevertheless, trust issues persist in these systems, particularly 
concerning the integrity and reliability of traceability data. Blockchain has been proposed to address these trust issues by creating an 
immutable and transparent ledger distributed across all peers. Despite this innovation, different studies underscore the inadequacy of 
relying solely on blockchain to ensure the trustworthiness of traceability data. This paper addresses this gap by proposing an adaptable 
and extensible framework that combines blockchain with a multi-trust packages-based trust model. The framework seeks to strengthen 
trust relationships among supply chain actors by improving the accuracy of identifying specific areas within the supply chain where 
compromises in quality and safety have occurred. 

Keywords: Traceability, Trust Metrics, Trust Score, Trust Package, Trust Package Smart Contract, Metrics Developer, Trust Model, Blockchain, Data 
Trust 
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1. Introduction 

Several scandals and recalls resulting from quality and safety 
compromise, as well as product counterfeiting, have been 
reported from supply chains around the world [1–4]. Many 
lives have been lost due to quality and safety compromise 
problems. For example, regarding food supply chains, the 
World Health Organisation reported that an estimated 600 
million people become sick because of consuming food 
products and 420,000 end up dying [5]. This has resulted in 
many consumers losing trust in supply chains. To address 
this issue, several studies have suggested end-to-end 
traceability [6–8]. End-to-end traceability can provide an 
audit trail in the movement of a product in the supply chain 
[9], which helps detect quality and safety issues at the early 
stages of the supply chain [10]. It also makes product recalls 
to be managed systematically [11] and shortens the time 
taken to trace and pinpoint exactly where the product might 
have been compromised [12]. In food and pharmaceutical 
supply chains, many governments have taken the initiative 

to make traceability a legal obligation to protect consumers 
[13, 14].  

To support traceability processes in supply chains, automated 
traceability systems are being used. These traceability systems 
can store traceability data in centralised repositories [15] or in 
repositories using distributed ledger technologies such as 
blockchain [16–19]. Centralised traceability systems provide 
non-tamper-proof data repositories. However, repositories 
whose data can be tampered with have data trust problems, as 
nothing stops the parties from tampering with the data to 
favour their interests [10]. Therefore, traceability systems 
based on a centralised approach fail to protect traceability data 
from the possibility of tampering [20, 21]. Although 
blockchain can provide tamper-proof repository, Powell et al. 
[20] argue that there exists a Garbage in Garbage Out (GIGO) 
problem with the blockchain approach. This is because 
blockchain does not have the capability to correct faulty and 
malicious data from the source to the ledger. To address the 
GIGO problem, Malik et al. [22], Dedeoglu et al. [21], and Al-
Rakhami and Al-Mashari [23] proposed approaches that 
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integrate blockchain and trust model, referred to in this study 
as blockchain + trust model approach. In this approach, the 
trust model’s role is to establish trust in the ecosystem by 
computing the degree of trust (trust score) and associating the 
score with the network participants and data, while the 
blockchain provides tamper-proof repository. To develop trust 
models, trust metrics (TMs) are used. TMs are vital in 
determining whether a trust model accurately computes trust 
[24, 25]. 

In blockchain + trust model frameworks, a single set of TMs 
is used to quantify and compute trust scores. Using trust 
models that rely on a single TMs set to solve the trust problem 
is less effective because (1) as traceability data is generated by 
different data sources in different supply chain links, different 
sets of trust metrics are required to quantify trust values 
effectively; (2) whenever there are changes in the supply chain 
trust needs (e.g., new data produced in the supply chain), the 
framework’s degree of accuracy in estimating trust score 
becomes low. This is because new trust requirements need 
different metrics to accurately compute trust. We agree with 
the views of other researchers that the problem can be solved 
by addressing the data trust problem [26, 8, 20, 21]. Therefore, 
our approach is to develop a framework that improves the 
end-to-end trustworthiness of traceability data by assessing the 
trustworthiness of traceability data and storing both data and 
associated trust values in a tamper-proof repository.  

The remainder of this article is organised as follows: Section 2 
discusses the existing traceability frameworks; Section 3 
presents the proposed framework; Section 4 discusses the case 
study; Section 5 provides a description of how trust metrics 
are developed; Section 6 presents the evaluation procedure for 
the framework; Section 7 discusses the limitations of this 
research, and Section 8 summarises the main points of the 
research and future work. 

2. Related work 

The literature presents several frameworks that attempt to 
address the problem of data trust. The frameworks can be 
categorised into three based on their architectural designs [8]. 
These include centralised [15, 27], blockchain [28], and 
blockchain + trust model [21]. 

In a centralised architecture, data from the supply chain is sent 
to a centralised repository mainly hosted in wide area 
networks. Some systems use one central repository, while 
others have distributed repositories. Electronic Product Code 
Information Service (EPCIS) is an example of a distributed 
centralised repositories network. EPCIS network has an extra 
repository called Discovery Service, whose function is to route 
the data requests from traceability applications to the right 
EPCIS data servers and re-route the queried data back to the 
requesting traceability applications. Central repositories are 
managed by intermediaries in the supply chain [29, 15]. 
Whenever traceability is needed, the central data repository is 

queried by traceability systems to acquire the data used for 
tracing the product. Traceability in this approach is solely 
dependent on the central data repositories. In all traceability 
systems based on a centralised architecture, intermediaries can 
tamper with the data and, hence, do not adequately address 
data trust issues in the supply chain [21, 22, 26, 48]. 

In blockchain architecture, traceability data from the supply 
chain is evaluated for validity by a consensus mechanism and, 
if valid, then passed into an immutable ledger. However, one 
of the drawbacks with the current blockchain consensus 
mechanism is that it cannot verify data veracity [20, 21]. The 
merits of this approach lie in the following: (1) there is a high 
level of transparency as nodes can always see data from other 
peers, which many researchers claim it encourages nodes to be 
honest. It should be noted that transparency is observed at 
different levels depending on the type of blockchain. In public 
blockchains, the same ledger is visible to all members; 
therefore, transparency is guaranteed to all members of the 
blockchain, while in consortium and private blockchains, 
transparency is at the group members level (those with 
common ledger). For example, in the Hyperledger Fabric 
consortium blockchain, transparency is limited to those within 
the same cluster. In this study, transparency is discussed in the 
context of consortium blockchains featuring a shared ledger 
among members; (2) immutability of data once in the ledger.  

Different researchers have proposed frameworks using this 
architecture. To control the distribution of counterfeit products in 
pharmaceutical supply chains, Kumar and Tripathi [31] developed 
a traceability system that uses blockchain technology and quick 
response (QR) code. In their traceability system, the encrypted 
QR code consists of the details of the medicine that a 
pharmaceutical company manufactures, and the information is 
stored in the immutable ledger. In agri-food supply chains, Lin et 
al. [32] integrated blockchain and Long-Range Radio (LoRa) IoT-
based architecture and demonstrated that minimising manual data 
entry by humans improves trust in food supply chains. A similar 
approach was also proposed by Tan, Gligor, and Ngah [33], who 
developed a traceability system using blockchain technology for 
tracing and confirming the authenticity of halal products.	
Similarly, Walmart piloted a blockchain traceability system on 
mango and pork supply chains, showing that traceability can be 
reduced from seven days to 2.2 seconds [19]. The blockchain 
approach provides the advantages of transparency, immutable 
ledger, and consensus mechanism that filter invalid data from 
entering the ledger. Since there is a lack of a mechanism to check 
the trustworthiness of the data before entering the ledger, the 
current blockchain is not sufficient to guarantee the 
trustworthiness of traceability data [8, 21, 22, 49]. This has also 
been observed by Powell et al. [20], who highlighted the GIGO 
problem.	

To address the drawbacks highlighted in the blockchain-
based approaches, blockchain + trust model approach has 
been proposed. The trust model is introduced to establish 
trust in the blockchain network so that both network nodes 
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and data flowing into the network can be trusted to a 
certain degree. Trust and trustworthiness are two concepts 
used in the development of trust models. Trust is drawn 
from human life and, as Sagar et al. [24] highlighted, “It is a 
fundamental aspect of human life for building relationships 
with each other.” Research in trust cuts across various 
disciplines, such as psychology [34, 35], sociology [36, 37], 
economics [38, 39], and computer science [40–46]. What is 
common in all the disciplines is that there is a trustor and 
trustee. The trustee makes a promise by sharing 
information, and the trustor accepts to rely on the 
information that the trustee will fulfil the promise. 
Computer science has multiple domains where the concept 
of trust is applied. These include software engineering [40], 
networking [41], data trust [42, 43], artificial intelligence 
[44], and web management [45, 46]. In these areas, trust is 
associated with the trustor and it is the behaviour displayed 
by the trustor based on the trustworthiness of the trustee. 
Thus, trustworthiness is a characteristic displayed by the 
trustee.  

Our focus in this research is on addressing trust in traceability 
data for supply chains. Accordingly, trust models are built to 
mathematically quantify trustworthiness in a particular domain 
and context [47]. In the existing trust models, the quantified 
value is the measure of the trustworthiness of the trustee. It is 
mostly referred to as the trust score. Trust models typically 
normalise trust scores to fall between 0 and 1. 0 implies no 
trust at all, while 1 means full trust. Low trust values are those 
near 0, and high trust values are those near 1.  

Few frameworks have been observed in the literature 
developed using this approach. These include Malik et al. [22], 
Al-Rakhami and Al-Mashari [23], Dedeoglu [21], and Rouhani 
and Deters [48]. Malik et al. [22] suggested trust metrics for 
generating trust scores that measure the level of quality and 
safety of the product. This means that a trust score close to 1 
implies high quality and safety of the product. However, the 
framework does not adequately address the trust problem in 
traceability data. The IoT devices are vulnerable to data 
security compromise [60]. This is because: (1) the devices are 
heavily dependent on batteries for power supply, which makes 
them vulnerable to energy-depletion attacks [61]; (2) the 
devices have a limited amount of memory and processing 
power, incapable of running complex cryptographic security 
algorithms [62]. Since IoT devices are vulnerable to so many 
security attacks, there is no guarantee that the data from the 
devices used by the framework to calculate trust scores is not 
malicious.  

Al-Rakhami and Al-Mashari [23] and Rouhani and Deters’ [48] 
frameworks attempt to assess trust in the data using 
blockchain + trust model approach. The problem with the 
frameworks is the use of one set of trust metrics. A supply 
chain comprises a consortium that contributes to and records 
various traceability data for a product. The consortium uses 
diverse data sources and using one set of trust metrics by these 

frameworks is a bottleneck in accurately assessing the 
trustworthiness of traceability data. For example, if there is a 
supply chain link that uses GPS devices to send location data 
about a product and another supply chain link that uses 
temperature and humidity sensors to capture data about the 
environmental conditions of the perishable products storage, 
using a single set of trust metrics cannot accurately assess data 
from GPS devices and environmental condition sensory data. 
Thus, using one set of trust metrics is limited in computing 
accurate trust scores. 

3. Adaptive and extensible framework 

We propose the development of a framework which improves 
the trustworthiness of traceability data across all the links of a 
supply chain. The framework uses different packages of TMs 
to quantify trust into numerical values. Figure 1 shows the 
different components of the framework. These include trust 
model, ledgers, access management, metrics management 
module, application management module, supply chain and 
metrics developers.  

The trust model comprises two smart contracts: metrics 
selection smart contract and trust computation smart 
contract. Overall, the trust model evaluates the data 
produced by data sources found in the supply chain links to 
check its validity in terms of trust. The trust model then 
computes trust scores and sends data and computed trust 
scores to the blockchain ledger. The trust model uses the 
metrics selection smart contract to select an appropriate 
trust package developed for trust assessment of the 
generated data. Trust packages refer to a set of TMs and the 
instructions on how they are used to establish trust. The 
metrics selection smart contract is triggered when an 
application sends data from the data generator to the 
blockchain. Trust computation smart contract uses the trust 
package to compute trust and send the data and trust score 
to the ledger. The data repositories consist of two main 
ledgers: the metrics ledger shaded green and the base ledger 
shaded grey. The base ledger stores traceability data and 
trust scores. This protects data and trust scores from 
tampering. Metrics ledger, on the other hand, stores 
different trust packages. TMs are protected in the ledger 
because of their criticality for accurately assessing trust 
scores. Metrics developers continuously assess the 
effectiveness of existing trust packages, and if some are 
seen to be less effective, then they develop new trust 
packages to replace them. Also, if new data generators 
generate data that none of the existing packages can assess 
for trust, then metrics developers develop trust packages to 
address those trust needs. This makes the framework to be 
more effective and relevant. The application module 
provides an interface between the blockchain ledger and 
end-user applications. Traceability systems used by end 
users will communicate load traceability data from the 
ledger by interacting with this module. 
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Figure 1. Framework for enhancing trust in supply chain 
links. Adapted from [25]. 

The supply chain is plugged into the framework, and data 
generators are available to generate data from traceability units 
and send it to the blockchain network. Data generators1 may 
involve manual entry by a human being who observes the 
product, or it can be an autonomous set-up where various 
sensors transmit data to the network. Metrics developers are 
members of the consortium whose sole responsibility is to 
provide the framework with appropriate trust packages for 
efficient computation of trust scores. This helps the 
framework to be up to date in accurately computing trust 
scores.  

4. Case study 

Botswana beef supply chain is chosen as a case study. The two 
farming methods practised at the farm link are free range and 
ranched. About 90% of farmers practise free range [50]. In 
terms of quantity and quality, Botswana is the biggest supplier 
of beef to the European Union (EU) from the African region 
[51]. While the Botswana beef supply chain is one of the top 
exporters of high-grade cattle meat from the continent [52], an 
audit by Engelen et al. [50] highlighted issues related to data 
trust. Due to traceability data trust, the country was 
temporarily banned from exporting to the EU [50] and, in 
2023, lost one of the lucrative markets in Norway [53].  

Beef supply chain links have been identified from the 
Botswana Agri-food Value Chain Project [50] and attached to 
the framework as an off-chain pluggable component. Figure 2 
shows the links extracted from the report. The Botswana beef 
supply chain currently uses a centralised traceability system 

 
1 In our case study, data generators are restricted to IoT sensory 
devices. 

called Botswana Animal Identification and Traceability System 
(BAITS) [54, 55].  

 

Figure 2. Product transformation links in Botswana beef 
supply chain. 

5. Trust packages development 

We used the guidelines provided by Leteane and Ayalew [25] 
to identify trust metrics and use them to develop trust 
packages for the Botswana beef supply chain. For 
demonstration purposes, trust packages for farm and cold 
room links are developed. 

5.1 Trust at the farm link 
Trust issues mainly emerge from free-range farming because it 
is difficult to monitor the location of the cattle. Botswana has 
different zones to identify areas affected by diseases such as 
foot and mouth disease (FMD). One of the major 
requirements of the EU market is that all meat products 
should be coming from disease-free zones. Assuring the 
markets that the cattle come from free-range farming has 
never passed through the FMD zones remains a big challenge. 
Collecting real-time data of cattle movement using IoT devices 
in this supply chain would be ideal. Nevertheless, the integrity 
and truthiness of the data from IoT devices could be 
compromised, resulting in data trust problems. Therefore, it is 
important to develop a trust package that the framework can 
use to enhance trust in the data coming from the cattle using 
IoT devices.  
 
The location of cattle data is collected from a GPS device. The 
devices are attached to the cattle and continually send GPS 
coordinates to the blockchain network through the internet. In 
the above data source, where IoT devices generate the data, 
there is a correlation between data quality and trust. Therefore, 
data trust issues may arise from what Byabazaire, O'Hare and 
Delaney [56] identify as intrinsic data quality dimensions. The 
dimensions include problems associated with data quality and 
integrity, provenance, and abnormality. While we acknowledge 
that all the dimensions must be addressed for data trust to be 
enhanced, data trust is broader, and quality does not always 
mean trust. Since existing approaches can be used to enhance 
data quality, we focus on the metric that improves trust in the 
data. The following factors are identified to help extract the 
trust metrics: (1) device malfunction (hardware and software) 
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– we argue that a device with valid calibration is likely to 
generate correct data; (2) data tampering – IoT devices are 
known to have limited security features and are vulnerable to 
data attacks. For example, a node in the network can change 
its behaviour to become an adversary and try to inject 
malicious data into the ledger. This kind of attack can be 
addressed by both temporal and spatial sensory data 
correlation and by evaluating the trust score of the data item. 
In the free-range farming set-up where cattle can go astray and 
graze on their own, there are challenges with spatial data as 
there will be reliance on one sensor. Temporal correlation of 
time series data is likely to evaluate and provide high accuracy 
of trust in this scenario; (3) the battery problems (low battery 
or high power consumption) – devices with low battery are 
likely to generate faulty data, and devices with high power 
consumption are likely to be malicious [57]. This can be 
addressed by monitoring the battery level and usage. Thus, to 
compute the trust values of data from IoT devices, device 
calibration, battery level and consumption, and temporal 
correlation are used as TMs.  
 
Device calibration: To quantify trust for device calibration trust 
metrics, a value of 1 is assigned if the device is calibrated; 
otherwise, a value of 0 is assigned, as shown in Equation (1). 

𝑇! = #0, 𝑖𝑓	𝑛𝑜𝑡	𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑	𝑜𝑟	𝑑𝑎𝑡𝑒	𝑒𝑥𝑝𝑖𝑟𝑒𝑑
1,								𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑																																														 

                                                                                            (1) 

Battery level and consumption: When the battery level goes below 
some threshold, the likelihood of the device producing correct 
data becomes low [57]. Also, malicious nodes are known to 
consume more energy than usual. Therefore, we chose energy 
level and consumption as one of the trust metrics of the data 
coming from IoT devices. We use two thresholds as follows: α 
= maximum energy consumption. Any node consuming 
energy above this threshold is considered malicious and 
produce untrustworthy data; 𝜌 = minimum energy level. A 
device whose energy level is lower than 𝜌 is considered to 
produce erroneous data that cannot be trusted. Like in [57], 
5% is reasonable 𝜌. However, the appropriate threshold value 
can be chosen based on the application use case. The rate of 
consumption ∆E and energy level Ec are computed as: 

                                    𝐸" = 𝐸#$%                               (2) 

                                ∆𝐸	 = 	𝐸# −	𝐸#$%                         (3) 

 Where 𝐸! < 	𝜌	 ⇒ incorrect data produced and ∆𝐸 > 𝛼 ⇒ 
energy level trust value 𝑇" = 0.  

In Equation (4), we quantify the energy trust metrics using 
both Ec and ∆E to produce trust value as follows: 

𝑇& = #0, 𝑖𝑓		𝐸" 	< 𝜌	𝑜𝑟	∆𝐸 > 𝛼
1,								𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																			  

                                                                                         (4) 

Temporal correlation: Due to the movement of cattle, there is a 
gradual change in location data. As in [58], temporal features 
of the location data over time are used in changing the TMs to 
numerical values. The GPS sensor provides data as latitudes 
and longitudes. To use these latitudes and longitudes for 
estimating distance, we use Haversine’s formula as in Equation 
(5). Let’s denote the distance between two points (previous 
and current position) to be Ry. We use average deviation to 
compute distance deviation tolerance. 

𝑅'
= 2 × 𝑅
× 𝑠𝑖𝑛(% EF𝑠𝑖𝑛)(∅) − ∅%) + 𝑐𝑜𝑠(∅%) × 𝑐𝑜𝑠(∅)) × 𝑠𝑖𝑛)(Ψ) −Ψ%)L 

                                                                                             (5) 

where R represents the earth’s radius, ∅# and ∅$ represent 
latitudes, Ψ1 and Ψ2 represent the longitudes. 

To determine whether the data is trusted or not, we use the 
average deviation, like Zhang [59]. After calculating the 
distance covered, we determine the tolerance value range. The 
tolerance value range is used to determine the trust value. To 
determine the tolerance value, we look at the latest normal 
behaviour of the cattle movement. We consider five days of 
normal behaviour data and use it to define the tolerance value 
range. Five days is chosen to use just enough data to observe 
general distance coverage daily. We limit history data to five 
days since using large data covering more than five days can 
affect the efficiency of the framework by taking a long time to 
process data. On the other hand, using less data covering less 
than five days may not give the accurate behaviour of cattle 
movement. Let D represent the normal behaviour data for five 
consecutive days. The average of distances covered within a 
fixed defined time duration in D is R0, and the degree of 
deviation of each distance is δ. If the degree of deviation δi > 
0, then an outlier exists that can be used to estimate the degree 
of trust in the incoming data. 

                         𝑅* = (𝑅% + 𝑅) + 𝑅++. . . +𝑅,)/𝑛                  (6) 

In Equation (6), there are n positions, and the nth position is 
represented by Rn. The deviation in the movement of cattle is 
calculated as follows: 

                           	𝜆- = |𝑅' − 𝑅*|	𝑖 = 1,2, . . . , 𝑛                      (7) 

In this formula, sample data is represented as Ry. T he 
deviation in the expected distance of coverage is: 

                          𝛿- = 𝜆-/𝑅*                                         (8) 

Next, we calculate the average sum of deviations from the 
previous samples. This gives us the approximate deviation of 
every sample. Thus, every deviation is expected to be close to 
the average degree of deviation. The average deviation and 
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average coverage distance are used to set the tolerance 
threshold. The tolerance value is calculated using Equations 
(9) and (10): 

                                  ∆	= 	∑ .!
,
                                             (9) 

                                 𝜂	 = ∆ × 𝑅*	                                        (10)  

We then check whether the incoming radius of coverage 
falls within the range of (R0–η, R0 + η). If the radius falls 
within the range, then the trust score Tc for the metrics is 
considered high and falls within the range 50 < ts < 100. 
Otherwise, the trust score is low and falls in the 0 < Tc < 
50 range. Hence, we qualify the data set as trusted if the 
trust score is 0.5 or higher and not trusted if it is below 0.5. 
Tc is calculated as: 

𝑇" = T
1										𝑖𝑓	𝜆 = 0																																																
	1 − 𝛿	𝑖𝑓	𝜆 > 0	𝑎𝑛𝑑	𝑅* − 𝜂 ≤ 𝜆 ≤ 𝑅* + 𝜂
0.5 × 𝛿											𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																															

 

                                                                                           (11) 

The total trust score (Ts) represents the total trust score 
aggregated from all three TMs of the location. The choice of 
aggregation technique is determined by metrics developers 
based on the technique that gives better accuracy.  

A weighted sum is chosen in this case for demonstration, as 
shown in Equation (12). Equation (5) gives the actual distance of 
coverage between two positions over a time window. The time 
window is defined at the time of sensor configuration. 

𝑇/ = 𝑤%𝑇! +𝑤)𝑇& +𝑤+𝑇" , 𝑤% +𝑤) +𝑤+ = 1 

                                                                                           (12) 

where 𝑤#, 𝑤$,	and 𝑤% are weights of each TM. The weights 
are assigned based on the importance of the TM to the overall 
trust score. 

5.2 Trust at the cold room links 

IoT temperature and humidity sensors are used to collect 
and forward the data to the framework. Here, we are 
interested in ensuring that the data represents the actual 
condition of the environment where the product is stored. 
Unlike in location data, sensors are not mobile. However, 
the first two trust metrics from the previous section remain 
important as sensors depend on battery and correct 
calibration to provide trusted data. Thus, we use the battery 
management and calibration metrics again. According to 
Karthik and Ananthanarayana [57], a correlation exists 
between data from a sensor and data from neighbouring 
sensors. We consider the spatial correlation of the sensory 
data from all the sensors in the same room. It is suggested 

that multiple similar sensors be used in the same room to 
collect the same environmental condition data [43]. The 
expectation is that the data generated by the sensors must 
be almost the same. A correlation coefficient of data from 
all the sensors in the cluster observing the same phenomena 
is calculated and used to represent the trust score. Equation 
(15) is used to compute the trust score for spatial 
correlation of data. Let Seni be a sensor in a room with a 
set of S sensors measuring the same phenomena, in this 
case, temperature. Then, we calculate the mean as: 

             𝜇	 = 	∑ /&,!	#
!	$	%

,
, ∀𝑠𝑒𝑛- 	 ∈ 	𝒔                                       (13)                         

and the deviation of the sensory data as: 

              𝜎 = \%
,
∑ (𝑠𝑒𝑛- − 𝜇)),
-1%                                          (14) 

The trust score is given by subtracting the correlation 
coefficient from the possible highest trust score: 

                    𝑇/2 	= 	1	 −	(3
4
)                                                 

(15)                            

Like in the previous package, a weighted sum is used to 
aggregate all trust scores from the metrics to compute the total 
trust score. Thus, 

𝑇𝑜𝑡𝑎𝑙_𝑡𝑟𝑢𝑠𝑡"567 =	𝛼𝑇"588 + 𝛽𝑇/2 + 𝛾𝑇9:##	, 𝛼	 + 𝛽 + 𝛾 = 1 

                                                                                         (16) 

 

5.3 Developing trust packages smart contracts 

Each trust package is added to the framework as a special smart 
contract called trust package smart contract (TPSC). Four 
algorithms are provided below and used by the TPSC to quantify 
and compute trust from data coming from supply chain links. 

ALGORITHM 1 BATTERY LEVEL 
 Input: Batterylevel 
 Output: Batterytrustscore 
1 Batterythrsd ← 0.05 
2 if (Batterylevel ≤ Batterythrsd) & (consumption ≤ θ) then 
3  TSbat ← 1 
4 else 
5  if (Batterylevel ≥ Batterythrsd) & (consumptionrate ≤ θ) || 

(Batterylevel ≤ Batterythrsd)& (consumptionrate ≤ θ) then 
6   TSbat ← 0 
7  else 
8   TSbat ← 1 – Batterylevel 
9  end if 
10 end if 
11 return TSbat 
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The sensor collects environment data and proposes the 
transaction to the blockchain. Algorithm 1 is used by TPSC when 
data is sent from the supply chain to the framework. TPSC uses 
algorithm 1 to compute the trust score for battery-level trust 
metrics. The computation is based on Equations (2)–(4). 
Algorithm 2 computes trust score for the calibration trust metrics. 
TPSC uses the algorithm to get the trust score for the metrics and 
is used in computing the total trust score for the data. TPSC also 
uses algorithm 3 to compute trust score for temporal correlation 
metrics. The algorithm uses Equations (5)–(11) to compute the 
trust score. Then, TPSC uses Equation (12) to compute the 
trustworthiness of the location data. The sensor triggers the 
appropriate TPSC for computing the trust score for the data and 
passes the data together with the trust score to the ledger. 
Algorithms 1–3 use Equations (1)–(12) to compute the trust 
score. 

ALGORITHM 2 CALIBRATION_DATA 
 Input: Validation expiry date 
 Output: Total trust score for calibration (TS_cal) 
1 if validation expiry date≤ today then 
2  calibrationvalid ← TRUE 
3 else 
4  calibrationvalid ← FALSE 
5 End if 
6 If calibrationvalid = TRUE then 
7  TS_cal ← 1 
8 else 
9  TS_cal ← 0 
10 End if 
11 Return TS_cal 

The trust package that computes the trust score of the 
data from the GPS data source in the farm link uses 
algorithms 1–3. The TPSC takes the quantified trust 
metrics values and uses weighted sum aggregation to 
compute the final trust score for the data. The trust score 
is then passed to the smart contract that writes the data 
and trust score to the blockchain ledger. Algorithm 4, on 
the other hand, is used by the TPSC to compute the trust 
score for the data coming from cold storage links. When 
the sensors send environmental condition data, it triggers 
the appropriate TPSC smart contract to execute. The 
TPSC then uses algorithm 4 and returns the trust score 
written with data to the blockchain ledger. 

ALGORITHM 3 TEMPORAL CORRELATION TRUST SCORE 
 Input: PosLat, PrevLat, PosLong, PrevLong, PrePos 

(latitudes and longitudes of previous and current positions) 
 Output: Total trust score based on data temporal correlation 
1 R ← 6371 //Radius of the earth as a constant 
2 Sleepdur ← 720 (maximum time in minutes of no movement) 
3 if (PosLat = PrevLat) & (PosLong = PrevLong) then 
4  Total trust score ← 0 
5 else 
6  dlat ←|PosLat − PrevLat| 
7  dlon ← |PosLong − PrevLong| 

8  coverageRadius ← sine(dlat/2)2 + cosine(PrevLat) x 
cosine(PosLat) x sine(dlon/2)2 

9  Actualdistance←(2R x sine-1/0𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒&'()*+8 
10  PrevAverages←

∑ '-"_(!
"
!#$

/
 

11  Deviation ← |Actualdistance – PrevAverages| 
12  if Deviation = 0 then 
13   trust score ← 1 
14  else 
15   deviationdegree ← 0"-)'1)23

45"-%&'()*'+
 

16   
Averagedeviations ← 

∑ (')670"-)'1)23,
"
,#$

/
 

17   tolC←Averagedeviation + PrevAverages //(maximum 
tolerance) 

18   tolF←|Averagedeviation – PrevAverages| //(minimum 
tolerance) 

19   if (deviationdegree ≥ TolC) & (deviationdegree ≤ tolF) 
then 

20    Trust_score = 1 – deviationdegree 
21   else 
22    trust score = 0.5 – deviationdegree 
23   End if 
24  End if 
25 End if 
26 Return trust_score 
 
5.4  Adding trust packages to the framework 

After a trust package is developed, it must be accepted in the 
network by all affected supply chain actors for it to be used in 
the framework. The acceptance process is initiated by the 
metrics developer who wants the developed trust package to 
be used. If the package is accepted, then the metrics developer 
packages the accepted trust package as TPSC and adds it to 
the blockchain network. 

ALGORITHM 4 TEMPERATURE DATA TRUST PACKAGE 
 Input: Temperature and battery level data 
 Output: Total trust score for the cold room data 
1 

𝜇	 ← 	
∑ 𝒕𝒆𝒎𝒑_𝒅𝒂𝒕𝒂𝒔𝒆𝒕𝒊𝒏
𝒊:𝟏

𝒕𝒆𝒎_𝒅𝒂𝒕𝒂𝒔𝒆𝒕. 𝒔𝒊𝒛𝒆  

2 
 div←G#

3
∑ (𝑠𝑒𝑛) − 𝜇)$3
):#                                    

3 corrcoef←
()-
<

 
4 Trustspatial←1 – corrcoef 
5 if (Batterylevel ≥ Batterythrsd) & (consumption_rate ≥ 𝜃) then 
6  TSbat ←1 
7 else 
8  if (Batterylevel ≥ Batterythrsd) & (consumption_rate ≤ θ) 

|| (Batterylevel≤Batterythrsd) & (consumption_rate ≤ θ) 
then 

9   TSbat ← 0 
10  else 
11   TSbat ← 1 − Batterylevel 
12  End if 
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13 End if 
14 if calibrationvalid = TRUE then 
15  TS_cal ← 1 
16 else 
17  TS_cal ← 0 
18 End if 
19 Trustcold←

=5*+1+-).!)/>=?0).>=?_!'6
%

 
20 Return Trustcold 

 
 

The cluster members accept the smart contract into the 
network. All the data from the supply chain is then 
proposed through the organisation’s peer. The peer then 
selects and triggers the appropriate TPSC to compute the 
trust score. The metrics developers may now be given some 
incentives for successfully providing a useful trust package. 
However, the mechanism of providing incentives is outside 
the scope of this paper. 

6. The development of the framework 

We chose the Hyperledger Fabric blockchain platform. One 
key advantage is its modular architecture, allowing flexibility 
and customisation to meet diverse business requirements. 
Additionally, Hyperledger Fabric ensures enhanced privacy 
and permissioned access, making it well-suited for enterprise 
use, especially in industries where data confidentiality and fine-
grained control over permissions are crucial. Its support for 
smart contracts and a pluggable consensus mechanism further 
contributes to its appeal for building the framework. As shown 
in Figure 3, data flows from the supply chain through  
the internet into the framework. Since the cattle being 
monitored are mobile, we recommend building a LoRaWAN  

 

Figure 3. Implementation procedure. 

 

 

Figure 4. The farm link cluster. 

network and attaching the LoRa end devices that sense 
and communicate GPS coordinates. In areas where there 
is no internet coverage, the gateway can communicate 
with the blockchain network through a GSM network. 
The LoRaWAN gateway will then redirect the data to the 
blockchain network, where the endorsement process will 
start. The fabric gateway will propose a transaction by 
sending the proposal to appropriate peers for 
endorsement signatures. The network set-up for the farm 
link cluster is shown in Figure 4. The procedure for 
adding location data to the ledger is as follows: the GPS 
data application proposes the transaction once the data is 
collected from the environment by connecting to the 
appropriate peers. 

The phases starting with the endorsement to the commitment 
of the block to the ledger are followed. In this case, when data 
is proposed to be added to the ledger, the triggered trust 
package smart contract is the one that uses algorithms 1–3. All 
data from a GPS sensor in the farm link will trigger this smart 
contract. Organisations in the cold room link also form a 
cluster in the blockchain network. Similarly, applications from 
temperature and humidity sensors propose transactions by 
sharing the proposal with appropriate peers for endorsement, 
ordering service, and then committing peers. In this cluster, 
endorsing and committing peers compute trust score by 
engaging trust package smart contract that uses algorithm 4. It 
is important to note that trust package smart contracts used in 
this cluster are different from those used in the farm link 
cluster, hence our idea of the use of multi-trust package to 
improve trust in traceability data in the supply chain. 

7. Limitations of the study 

Most farmers rear their cattle in rural areas where there is no 
internet coverage, limited network infrastructures, and no 
power supply grid. This poses a challenge in collecting real-
time data on the correct movement and positions of the 
animals using network devices. An option to address this 
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challenge is to build the infrastructure from scratch. 
Developing economies still face financial constraints to 
develop such infrastructure, hence low-power wireless area 
networks (LPWAN) are considered to be the most appropriate 
options. To address the challenge in our case study, we 
considered building LoRaWAN network with just a single 
gateway and 14 end devices to collect real-time data from the 
farm link. To tackle the power issue, solar panels will be 
utilised to supply power to the gateway. 

To collect the data, LoRa end devices are attached to the cattle’s 
neck. An adversary can potentially penalise the farmer by 
disconnecting the devices from the cattle and allowing them to 
enter the FMD zone. In this case, the data in our framework, 
which may be rated highly trusted, may not be true about the 
cattle. However, an approach proposed in [63] can be used to 
prevent the detaching of the LoRa end devices from live animal’s 
neck. It can also be argued that an untrusted farmer may not 
attach the devices to the cattle but rather give them to herd boys 
or moving objects and still allow the cattle to graze in the FMD 
zones while our framework receives false data on the animal’s 
location. The farmer can then attach the devices when it is time to 
take the cattle to the abattoir, where the data in our framework 
will perhaps suggest with a high degree of trust that the cattle has 
never grazed in the FMD zones. While this is a limitation in our 
case study, alternative devices such as rumen boluses with 
embedded RFID microchips can be used as end devices. The 
device is planted in the stomach of a cattle and starts sending 
signals to the gateway from the stomach [64]. The device is only 
removed when the cattle are slaughtered at the abattoir.  
Another challenge in our framework is developing trust 
metrics to detect false data entered by a human being. A 
way around this is to limit human data entry using IoT 
devices. Thus, in the current implementation, our 
framework can evaluate trustworthiness of the data only 
from IoT devices. However, it should be noted that our 
framework has metrics developers whose sole responsibility 
in the network is to develop and provide trust packages. 
While trust packages that can detect the trustworthiness of 
data from manual entry seem to be far-fetched at the 
moment, we believe that with time, metrics developers may 
come up with such trust packages. 

8. Conclusion 
Current traceability frameworks do not adequately address 
issues of trustworthiness of the data. This makes it difficult to 
convince consumers that the traceability data represents the 
truth about the condition of the product they purchase for 
consumption. As a result, consumers lose trust in the quality 
and safety of products from supply chains. Our approach 
presented a framework that improves trust in traceability data 
by integrating blockchain with a trust model. We demonstrated 
how blockchain and trust model can be integrated in 
developing an adaptive and extensible framework. The use of 
blockchain ledger as a repository guarantees that no actor can 
tamper with the data to their favour at any time. 

Our future work will focus on the evaluation of the framework 
and develop an incentive mechanism that can be used to 
reward metrics developers. 
________________________________________________________________ 
 
Competing Interests: 
None declared. 
 
 
Ethical approval: 
Not applicable. 
 
Author’s contribution 
The two authors contributed equally to the manuscript. 
 
Funding: 
None declared. 
 
Acknowledgement: 
Not applicable. 
________________________________________________________________ 
 
References 

[1] S. P. Gayialis, E. P. Kechagias, G. A. Papadopoulos, 
and D. Masouras, “A review and classification 
framework of traceability approaches for identifying 
product supply chain counterfeiting,” Sustainability, vol. 
14, no. 11, 6666, 2022. 

[2] P. Danese, R. Mocellin, and P. Romano, “Designing 
blockchain systems to prevent counterfeiting in wine 
supply chains: A multiple-case study,” International 
Journal of Operations & Production Management, vol. 41, 
no. 13, pp. 1–33, 2021. 

[3] E. R. Blickem, J. W. Bell, D. M. Baumgartel, and J. 
Debeer, “Review and analysis of tuna recalls in the 
United States, 2002 through 2020,” Journal of Food 
Protection, vol. 85, no. 1, pp. 60–72, 2022. 

[4] W. Wu, A. Zhang, R. D. van Klinken, P. Schrobback, 
and J. M. Muller, “Consumer trust in food and the  
food system: A critical review,” Foods, vol. 10, no. 10, 
2021. 

[5] The World Health Organisation, “Food safety,” 2020. 
Available at https://www.who.int/news-room/fact-
sheets/detail/food-safety. 

[6] P. Jahanbin, The investigation of blockchain and IoT 
integration for designing trust-driver information 
systems in agricultural food supply chain. PhD thesis, 
The University of Canterbury, Christchurch, New 
Zealand, June 2022. Available at https:// 
ir.canterbury.ac.nz/server/api/core/bitstreams/ 
f4fa19ea-a083-4807-af9a-3bcf8123810c content. 

[7] R. Cole, M. Stevenson, and J. Aitken, “Blockchain 
technology: Implications for operations and supply 
chain management,” Supply Chain Management: An 
International Journal, vol. 24, no. 4, pp. 469–483, 2019. 

[8] O. Leteane, Y. Ayalew, and T. Motshegwa, “A systematic 
review of traceability issues in beef supply chain 



 
 

 
The JBBA  |  Volume 7 |  Issue 1  |  2024                                       Published Open Access under the CC-BY 4.0 Licence 

                                                                                                                                          
 

10 

 

management,” in 2021 IEEE International Conference on Big 
Data (Big Data), pp. 3426–3435, IEEE, 2021. 

[9] G. Alfian, M. Syafrudin, N. L. Fitriyani, J. Rhee, M. R. 
Ma'arif, and I. Riadi, “Traceability system using IoT 
and forecasting model for food supply chain,” in 2020 
International Conference on Decision Aid Sciences and 
Application (DASA), pp. 903–907, IEEE, 2020. 

[10] F. Tian, “An agri-food supply chain traceability system 
for China based on RFID blockchain technology,” in 
2016 13th international conference on service systems and service 
management (ICSSSM), pp. 1–6, IEEE, 2016. 

[11] T. K. Agrawal, V. Kumar, R. Pal, L. Wang, and Y. 
Chen, “Blockchain-based framework for supply chain 
traceability: A case example of textile and clothing 
industry,” Computers Industrial Engineering, vol. 154, p. 
107130, 2021. 

[12] L. C. H. Ghadafi, M. Razak, and M. Stevenson, “Supply 
chain traceability: A review of the benefits and its 
relationship with supply chain resilience,” Production 
Planning & Control, vol. 34, no. 11, pp. 1114–1134, 2023. 

[13] F. Fung, H.-S. Wang, and S. Menon, “Food safety in 
the 21st century,” Biomedical Journal, vol. 41, no. 2, pp. 
88–95, 2018. 

[14] European Commission, “Regulation EC No 
178/2002.” https://eurlex.europa.eu/ 
eli/reg/2002/178/oj, 2004. 

[15] J. Feng, Z. Fu, Z. Wang, M. Xu, and X. Zhang, 
“Development and evaluation on a RFID-based 
traceability system for cattle/beef quality safety in 
China,” Food Control, vol. 31, no. 2, pp. 314–325,  
2013. 

[16] R. Garrard and S. Fielke, “Blockchain for trustworthy 
provenances: A case study in the Australian 
aquaculture industry,” Technology in Society, vol. 62, p. 
101298, 2020. 

[17] S. Cao, W. Powell, M. Foth, V. Natanelov, T. Miller, 
and U. Dulleck, “Strengthening consumer trust in beef 
supply chain traceability with a blockchain-based 
human-machine reconcile mechanism,” Computers and 
Electronics in Agriculture, vol. 180, p. 105886, 2021. 

[18] K. M. Botcha, V. V. Chakravarthy, and Anurag, 
“Enhancing traceability in pharmaceutical supply chain 
using internet of things (IoT) and blockchain,” in 2019 
IEEE International Conference on Intelligent Systems and 
Green Technology (ICISGT), pp. 45–453, 2019. 

[19] R. Kamath, “Food traceability on blockchain: 
Walmart’s pork and mango pilots with IBM,” The 
Journal of the British Blockchain Association, vol. 1, no. 1,  
p. 3712, 2018. 

[20] W. Powell, M. Foth, S. Cao, and V. Natanelov, 
“Garbage in garbage out: The precarious link between 

IoT and blockchain in food supply chains,” Journal of 
Industrial Information Integration, p. 100261, 2021. 

[21] V. Dedeoglu, R. Jurdak, G. D. Putra, A. Dorri, and S. 
S. Kanhere, “A trust architecture for blockchain in 
IoT,” in Proceedings of the 16th EAI International Conference 
on Mobile and Ubiquitous Systems: Computing, Networking 
and Services, pp. 190–199, 2019. 

[22] S. Malik, V. Dedeoglu, S. S. Kanhere, and R. Jurdak, 
“Trustchain: Trust management in blockchain and IoT 
supported supply chains,” in 2019 IEEE International 
Conference on Blockchain (Blockchain), pp. 184–193, IEEE, 
2019. 

[23] M. S. Al-Rakhami and M. Al-Mashari, “A blockchain-
based trust model for the internet of things supply chain 
management,” Sensors, vol. 21, no. 5, p. 1759, 2021. 

[24] S. Sagar, A. Mahmood, Q. Z. Sheng, J. K. Pabani, and 
W. E. Zhang, “Understanding the trustworthiness 
management in the social internet of things: A survey,” 
arXiv preprint arXiv:2202.03624, 2022. 

[25] O. Leteane and Y. Ayalew, “An adaptive and extensible 
framework to enhance end to end trustworthiness of 
traceability data,” in 2022 IEEE/ACS 19th International 
Conference on Computer Systems and Applications (AICCSA), 
pp. 1–8, IEEE, 2022. 

[26] F. Tian, “A supply chain traceability system for food 
safety based on HACCP, blockchain internet of 
things,” in 2017 International Conference on Service Systems 
and Service Management, pp. 1–6, IEEE, 2017. 

[27] M. Thakur and E. Foras, “EPCIS based online 
temperature monitoring and traceability in a cold meat 
chain,” Computers and Electronics in Agriculture, vol. 117, 
pp. 22–30, 2015. 

[28] X. Yang, M. Li, H. Yu, M. Wang, D. Xu, and C. Sun, 
“A trusted blockchain-based traceability system for 
fruit and vegetable agricultural products,” IEEE 
Access, vol. 9, pp. 36282–36293, 2021. 

[29] A. Kassahun, R. J. M. Hartog, and B. Tekin-erdogan, 
“Realizing chain-wide transparency in meat supply 
chains based on global standards and a reference 
architecture,” Computers and Electronics in Agriculture, vol. 
123, pp. 275–291, 2016. 

[30] G. Hartley, “The use of EPC RFID standards for 
livestock and meat traceability,” New Zealand RFID 
Pathfinder Group, 2013. 

[31] R. Kumar and R. Tripathi, “Traceability of counterfeit 
medicine supply chain through blockchain,” in 2019 
11th International Conference on Communication Systems 
Networks (COMSNETS), pp. 568–570, COMSNETS, 
7–11 Jan. 2019. 

[32] J. Lin, Z. Shen, A. Zhang, and Y. Chai, “Blockchain 
and IoT-based food traceability for smart agriculture,” 



 
 

 
The JBBA  |  Volume 7 |  Issue 1  |  2024                                       Published Open Access under the CC-BY 4.0 Licence 

                                                                                                                                          
 

11 

 

in Proceedings of the 3rd International Conference on Crowd 
Science and Engineering, pp. 1–6, 2018. 

[33] A. Tan, D. Gligor, and A. Ngah, “Applying blockchain 
for halal food traceability,” International Journal of 
Logistics Research and Applications, vol. 25, pp. 1–18, 
2020. 

[34] B. R. Schlenker, B. Helm, and J. T. Tedeschi, “The 
effects of personality and situational variables on 
behavioral trust,” Journal of Personality and Social 
Psychology, vol. 25, no. 3, p. 419, 1973. 

[35] S. M. Ghafari, “Towards time-aware context-aware 
deep trust prediction in online social networks,” arXiv 
preprint arXiv:2003.09543, 2020. 

[36] X. Zheng, Trust prediction in online social networks. 
PhD thesis, Macquarie University, Faculty of Science 
and Engineering, Department of, 2015. 

[37] M. R. Welch, R. E. Rivera, B. P. Conway, J. Yonkoski, 
P. M. Lupton, and R. Giancola, “Determinants and 
consequences of social trust,” Sociological Inquiry, vol. 
75, no. 4, pp. 453–473, 2005. 

[38] K. Jones and L. N. Leonard, “Trust in consumer- to-
consumer electronic commerce,” Information & 
Management, vol. 45, no. 2, pp. 88–95, 2008. 

[39] R. E. Backhouse and S. G. Medema, “Retrospectives: 
On the definition of economics,” Journal of Economic 
Perspectives, vol. 23, no. 1, pp. 221–233, 2009. 

[40] M. T. Thielsch, S. M. Meeßen, and G. Hertel, “Trust 
and distrust in information systems at the workplace,” 
PeerJ, vol. 6, p. e5483, 2018. 

[41] K. N. Qureshi, G. Jeon, et al., “A trust evaluation model 
for secure data aggregation in smart grids infrastructures 
for smart cities,” Journal of Ambient Intelligence and Smart 
Environments, vol. 13, no. 3, pp. 235–252, 2021. 

[42] C. Dai, D. Lin, E. Bertino, and M. Kantarcioglu, “An 
approach to evaluate data trustworthiness based on data 
provenance,” in Secure Data Management: 5th VLDB 
Workshop, SDM 2008, Auckland, New Zealand, August 
24, 2008. Proceedings 5, pp. 82–98, Springer, 2008. 

[43] H.-S. Lim, Y.-S. Moon, and E. Bertino, “Provenance-
based trustworthiness assessment in sensor networks,” 
in Proceedings of the Seventh International Workshop on Data 
Management for Sensor Networks, pp. 2–7. 

[44] K. Siau and W. Wang, “Building trust in artificial 
intelligence, machine learning, and robotics,” Cutter 
Business Technology Journal, vol. 31, no. 2, pp. 47–53, 
2018. 

[45] X. Yin, J. Han, and S. Y. Philip, “Truth discovery with 
multiple conflicting information providers on the 
web,” IEEE Transactions on Knowledge and Data 
Engineering, vol. 20, no. 6, pp. 796–808, 2008. 

[46] D. Gefen, I. Benbasat, and P. Pavlou, “A research 
agenda for trust in online environments,” Journal of 
Management Information Systems, vol. 24, no. 4, pp. 275–
286, 2008. 

[47] S. P. Marsh, Formalizing trust as a computational 
concept. Thesis, 1994. 

[48] S. Rouhani and R. Deters, “Data trust frame- work using 
blockchain technology and adaptive transaction 
validation,” IEEE Access, vol. 9, pp. 90379–90391, 2021. 

[49] W. Powell, M. Foth, S. Cao, and V. Natanelov, 
“Garbage in garbage out: The precarious link between 
IoT and blockchain in food supply chains,” Journal of 
Industrial Information Integration, vol. 25, p. 100261, 2022. 

[50] A. V. Engelen, P. Malope, J. Keyser, and D. Neven, 
“Botswana agrifood value chain project: Beef value 
chain study,” Report, Food and Agriculture 
Organization of the United Nations and Ministry of 
Agriculture, Botswana, 2012. 

[51] T. Prinsloo, Livestock traceability systems in Swaziland 
and Namibia: Towards an impact-for-sustainable-
agriculture framework. Thesis, 2017. 

[52] T. Seleka and P. Kebakile, “Export competitiveness of 
Botswana's beef industry,” The International Trade 
Journal, vol. 31, pp. 76–101, 2017. 

[53] K. Ontebetse, “Norway dumps BMC beef,” Sunday 
Standard, 03 April 2023. Available at: 
https://www.sundaystandard.info/norway-dumps-
bmc-beef/ (Accessed: June 24th, 2023). 

[54] Botswana Government, “User application for 
Botswana animal identification and traceability system 
(BAITS),” https://www.gov.bw/animal-
husbandry/user-application-botswana-animal-
identification-and-traceability-system-baits, 2022. 

[55] L. Modisa, “Botswana animal identification traceability 
system,” 14 September 2022, 2013. 

[56] J. Byabazaire, G. O’Hare, and D. Delaney, “Data 
quality and trust: Review of challenges and 
opportunities for data sharing in IoT,” Electronics, vol. 
9, no. 12, p. 2083, 2020. 

[57] N. Karthik and V. Ananthanarayana, “Sensor data 
modeling for data trustworthiness,” in 2017 IEEE 
Trustcom/BigDataSE/ICESS, pp. 909–916, IEEE, 
2017. 

[58] G. C. Karmakar, R. Das, and J. Kamruzzaman, “IoT 
sensor numerical data trust model using temporal 
correlation,” IEEE Internet of Things Journal, vol. 7, no. 
4, pp. 2573–2581, 2020. 

[59] Z. Zhang, “Computer simulation method for data 
trust analysis based on average deviation algorithm,” 
IEEE Access, vol. 11, pp. 19602–19612, 2023. 



 
 

 
The JBBA  |  Volume 7 |  Issue 1  |  2024                                       Published Open Access under the CC-BY 4.0 Licence 

                                                                                                                                          
 

12 

 

[60] K. K. S. Gautam, R. Kumar, and D. N. Gupta, 
“Challenges, attacks, QoS, and other security issues for 
an IoT environment,” in AIP Conference Proceedings, vol. 
2555, AIP Publishing, 2022. 

[61] A. Alsirhani, M. A. Khan, A. Alomari, S. Maryam, A. 
Younas, M. Iqbal, M. H. Siqqidi, and A. Ali, “Securing 
low-power blockchain-enabled IoT devices against 
energy depletion attack,” ACM Transactions on Internet 
Technology, vol. 23, no. 3, pp. 1–17, 2023. 

[62] S. K. Sharma and X. Wang, “Live data analytics with 
collaborative edge and cloud processing in wireless 
IoT networks,” IEEE Access, vol. 5, pp. 4621–4635, 
2017. 

[63] P. K. Wamuyu, “A conceptual framework for 
implementing a WSN based cattle recovery system in 
case of cattle rustling in Kenya,” Technologies, vol. 5, no. 
3, p. 54, 2017. 

[64] E. Hajnal, L. Kov ́acs, and G. Vakulya, “Dairy cattle 
rumen bolus developments with special regard to the 
applicable artificial intelligence (AI) methods,” Sensors, 
vol. 22, no. 18, p. 6812, 2022. 


