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Abstract 
The development of cutting-edge large language models such as ChatGPT has sparked global interest in the transformative potential of 
chatbots to automate language tasks. However, alongside the remarkable advancements in natural language processing, concerns about 
user privacy and data security have become prominent challenges that need immediate attention. In response to these critical concerns, 
this article presents a novel approach that addresses the privacy and security issues in chatbot applications. We propose a secure and 
privacy-preserving framework for chatbot systems by leveraging the power of decentralised federated learning (DFL) and secure multi-
party computation (SMPC). Our DFL framework leverages blockchain smart contracts for participant selection, orchestrating the 
training process on user data while keeping the data local, and model distribution. After each round of local training by the participants, 
the blockchain network securely aggregates the model updates using SMPC, ensuring that participants’ raw model parameters are not 
exposed to others. The global model is encrypted and stored in hypermedia protocols such as the InterPlanetary File System. 
Participants decrypt the global model updates using their private keys to further fine-tune their models. Iterative training rounds are 
executed through the blockchain network, with participants updating the model collaboratively using SMPC. Experiments show that 
our approach achieves comparable performance to centralised models while offering significant improvements in privacy and security. 
This article presents a ground-breaking solution to privacy and security challenges in chatbots, and we hope our approach will foster 
trust and encourage broader adoption of chatbot technology with privacy at the forefront. 

Keywords: Large language models, Privacy-centric machine learning, Decentralized federated learning, Multi-part computation, Knowledge distillation, 
Quantized language models 

JEL Classifications: Privacy-Preserving Learning, Decentralised Federated Learning, Tiny Language Models (TinyLMs), Secure Multi-party 
Computation (SMPC), Blockchain Technology  
 
 
1. Introduction 

Natural language processing (NLP) and Large language 
models (LLMs) have recently revolutionised human–
computer interaction [1]. Advanced LLMs such as 
ChatGPT by OpenAI have shown their potential to 
transform various industries and automate language tasks 
on an unprecedented scale [2]. However, this surge in 
useful applications has also raised significant concerns 
about privacy, trust, and user data exploitation [3]. As these 
LLMs process large amounts of user data for training and 
fine-tuning, it is essential to address the potential risks 
associated with unauthorised data access, breaches, and 
misuse. Striking a delicate balance between leveraging the 
power of chatbot technology and protecting user privacy is 
a critical challenge for the widespread adoption and ethical 
deployment of these revolutionary NLP systems.  

Federated learning (FL), originally proposed by McMahan et al. 
[4], is a promising solution for preserving user privacy, 
especially in the context of NLP technologies [5]. FL enables 
model training by distributing the learning process across 
individual user devices, thereby avoiding the need to centralise 
sensitive data on a single server. This approach keeps user data 
localised, encrypted, and under the user’s control, ensuring 
that no raw personal information is exposed during the 
training process. By aggregating model updates from multiple 
users without sharing their individual data, FL enhances 
privacy protection and minimises the risk of data breaches and 
unauthorised access.  

Despite the significant privacy advantages offered by FL, 
centralised FL implementations still pose certain threats. A 
centralised FL setup introduces the possibility of a single 
point of failure, where the central server becomes 
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vulnerable to attacks, potentially compromising the privacy 
of users. Additionally, model privacy concerns arise as the 
central server might have access to aggregated model 
updates from various users, raising the risk of information 
leakage or even malicious central servers as an extreme 
example [6]. As such, striking the  

 

Figure 1. Centralised vs decentralised federated learning. 

right balance between leveraging the benefits of FL’s privacy-
preserving capabilities and mitigating the challenges of 
centralised deployment remains a crucial area of research for 
fostering trust and upholding user privacy in the dynamic 
landscape of NLP.  

Blockchain-based learning is a promising alternative to 
centralised FL for addressing concerns about user privacy 
[7–9], especially for NLP technologies [10]. This approach 
mitigates the risks associated with a single point of failure 
by leveraging the decentralised and distributed nature of 
blockchain networks. In blockchain-based FL, or 
decentralised federated learning (DFL), participants (nodes) 
collaborate directly on the blockchain, contributing their 
encrypted model updates while maintaining control over 
their individual data [11]. The tamper-resistant nature of 

blockchain ensures data integrity and prevents unauthorised 
access, offering a more secure and privacy-preserving 
environment. Moreover, the use of blockchain smart 
contracts for aggregating model updates enables transparent 
and trustless computations without compromising 
individual users’ data privacy. Embracing blockchain-based 
FL has the potential to revolutionise the chatbot landscape 
by instilling user confidence and reinforcing the protection 
of sensitive information throughout the FL process. Figure 
1 showcases the differences between a centralised and a 
decentralised process and highlights the key differences in 
the setup, which is the blockchain infrastructure 
orchestrating the processing of FL instead of a central 
server.  

Firstly, blockchain-based DFL offers promising solutions to 
user privacy concerns in chatbot applications, but it also 
introduces specific challenges that need to be carefully 
considered, as discussed in this latest survey article [11]. One 
of the main challenges is the scalability and latency of 
blockchain networks. Because DFL involves multiple 
participants performing computations and sharing model 
updates on the blockchain, the sheer volume of data and 
transactions may result in slower processing times and 
increased network congestion. InterPlanetary File System 
(IPFS) [12] can be adopted to address scalability and latency 
concerns. IPFS allows participants to store models without 
explicitly relying on the blockchain infrastructure, making it an 
ideal solution for model communication and storage in DFL. 
The storage burden is distributed across participants with 
IPFS, which alleviates the scalability issues faced by a central 
server or the blockchain network itself.  

Secondly, different blockchains use various consensus algorithms, 
such as Proof-of-Work, Proof-of-Stake, or Practical Byzantine 
Fault Tolerance [11]. The choice of consensus mechanism affects 
network performance, energy consumption, and the level of 
decentralisation. To address this challenge, the DFL process can 
be adapted to different consensus mechanisms, ensuring 
compatibility with the selected blockchain. This adaptability 
allows blockchain-based DFL to optimise its performance while 
maintaining its privacy-preserving attributes.  

Thirdly, blockchain-based DFL faces the challenge of 
selecting a suitable model evaluation mechanism without 
compromising on security. We address this by ensuring 
differential privacy-enabled models [13] are used for peer 
evaluation and subsequently rewarding users for their 
participation in the evaluation phase, instead of users 
allowing access to raw model parameters that may 
potentially expose the training data via inversion attacks. A 
related issue is how to perform the model aggregation for 
the FL process at the end of each epoch without exposing 
the models of each user. To this end, we implement secure  

multi-party computation (SMPC) techniques to enable 
collaborative model aggregation across multiple participants 
[14]. SMPC can let multiple users combine their private 
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models without knowing each other’s inputs. To the best of 
our knowledge, we are the first to introduce this for 
blockchain-based FL [11]. 

Finally, deploying LLMs locally for privacy-preserving DFL 
chatbot applications is challenging because they require a 
lot of computational power, especially during inference 
tasks. LLMs, such as GPT-4, have shown impressive 
language-generation capabilities, but their large size and 
complexity require powerful hardware resources for 
efficient real-time performance [15]. Local deployment on 
resource-constrained devices can result in slow response 
times, increased latency, and potential memory constraints, 
which can hinder the seamless user experience that is 
critical for chatbot interactions. Similarly, fully 
homomorphic encryption-enabled LLMs increase the 
latency while trying to preserve user privacy [16]. 
Additionally, the continuous evolution of LLMs with 
ongoing updates and improvements requires consistent 
access to the latest model versions, which may be 
impractical to maintain locally. As a result, striking a 
balance between leveraging the capabilities of LLMs and 
the computational constraints of local deployment is a 
critical consideration for achieving optimal performance in 
chatbot applications.  

One way to address the challenges of deploying LLMs locally 
for DFL applications is to limit the chatbot’s functionality and 
embrace Tiny Language Models (TinyLMs) [17]. TinyLMs are 
smaller versions of LLMs that have been optimised for 
specific tasks or domains, reducing the model size and 
computational requirements without sacrificing much 
performance. By using TinyLMs that are tailored to the 
specific needs of the application, one can achieve a more 
lightweight and responsive deployment, making it feasible to 
run the chatbot on resource-constrained devices. This strategic 
use of TinyLMs allows chatbot developers to strike a balance 
between offering valuable language processing capabilities and 
ensuring a smooth user experience without the burden of 
deploying unwieldy LLMs locally.  

In summary, by combining the power of blockchain-based 
DFL with the generation of TinyLMs, we present a novel 
framework that revolutionises how language models are 
trained and deployed. Notably, our contribution extends 
beyond conventional methods by being among the first to 
implement SMPC in the context of DFL. This innovation 
ensures that participants’ data remains confidential during 
the collaborative model aggregation process, enhancing the 
privacy and security of the overall system. In addition, the 
generation of TinyLMs through fine-tuning, distillation, and 
quantisation enables the creation of efficient language 
models suitable for deployment on resource-constrained 

devices. The next section details our framework, Section 3 
demonstrates the effectiveness of our approach, and, 
finally, the article is concluded in Section 4. 

2. Decentralised Federated Learning for TinyLMs 

Secure DFL is a type of machine learning that allows multiple 
devices to collaboratively train a collaborative model without 
sharing their data and model with each other. This is done by 
having each device train a local model on its own data and 
then periodically exchanging encrypted updates with the other 
devices. The updates are then used to train a global model that 
is shared by all of the devices. Our blockchain-based DFL 
framework uses a smart contract to manage the entire process. 
The framework also includes a number of features that make 
it well-suited for NLP applications, including support for 
different learning algorithms, scalability, and security using 
SMPC, as shown in Figure 2. 

 

Figure 2. General architecture of our DFL for TinyLMs. 

Iterative Federated Learning: Participants are identified 
as nodes based on predefined criteria such as a registration 
fee, ensuring their active participation in the DFL process. 
The baseline dataset is distributed among the selected 
participants. Each node also possesses its local data and 
performs individual model training combining it with the 
distributed dataset, fostering baseline model performance. 
The training scheduler determines the timing and frequency 
of training rounds, allowing participants’ devices to 
contribute model updates at specified intervals. Participants 
contribute to model improvement by providing updated 
model parameters during each iteration. This iterative 
process allows the model to learn from various data 
distributions and adapt to diverse user preferences, which 
promote continuous model refinement. 
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Secure Storage: All communication between blockchain 
nodes and transactions is carefully protected using 
cryptographic protocols and the blockchain’s inherent 
consensus mechanisms. The global model is encrypted 
before being stored in the IPFS for added security and 
privacy. Nodes use their private keys to decrypt the model 
updates, updating their local models without revealing any 
sensitive data. This process ensures that the model updates 
are secure and private, while also allowing for efficient 
aggregation and distribution. 

Privacy-Preserving Learning: Differential privacy measures are 
incorporated during the evaluation phase. In addition to the 
normally trained pristine models, we have utilised OPACUS [18] 
to train models with differential privacy for propagation and 
evaluation to prevent privacy leakage. The evaluation scheduler 
coordinates the evaluation of individual model updates 
contributed by participants during each training round. 
Participants submit their differential privacy-enabled model 
updates, and the evaluation scheduler provides an incentive to the 
nodes who are participating in evaluating pending models. These 
security features safeguard data and model updates from 
unauthorised access, ensuring that sensitive information remains 
confidential throughout the DFL process.  

SMPC Collaborative Model Aggregation: To make 
collaborative model aggregation possible while maintaining 
individual model privacy, SMPC protocols are integrated into 
the aggregation scheduler of the smart contract. SMPC enables 
nodes to jointly compute the aggregated model without 
revealing their respective model updates. Nodes securely 
collaborate to combine their encrypted model parameters, 
ensuring that the raw model parameters remain private 
throughout the aggregation process. By employing this 
innovative method, the blockchain-based DFL framework 
ensures a privacy-centric, secure, and collaborative 
environment for training language models while preserving 
user data confidentiality and fostering trust in the decentralised 

chatbot ecosystem. A detailed implementation of this key 
feature is explained next. 

2.1 SMPC Implementation on the Ethereum Network 

Figure 3 illustrates the SMPC implementation for the 
aggregation process. The aggregation scheduler securely 
combines these updates using SMPC, which allows 
individual model updates to be merged without revealing 
the model parameters, thus protecting the privacy of each 
participant’s contribution. After the secure merging of 
model updates, the aggregation scheduler initiates the 
encryption of the final aggregated model. The aggregated 
model, which is encrypted for confidentiality, is stored in 
the IPFS, providing tamper-proof and immutable access for 
participants. 

2.2 TinyLMs 

TinyLMs are a viable solution in resource-constrained settings 
where deploying a large-scale language model (LLM) is 
impractical due to computational overhead. The process 
involves transforming an LLM into a more computationally 
feasible model while retaining its language processing 
capabilities through fine-tuning, distillation, and quantisation 
techniques. 

Knowledge Distillation: Knowledge distillation is used to refine 
the TinyLM and compress it without a significant loss in 
performance. In this step, the fine-tuned LLM acts as a 
“teacher” model, providing soft target probabilities to guide 
the training of a smaller “student” model. The student model 
is trained to mimic the teacher’s behaviour, thereby inheriting 
its language understanding capabilities. Through knowledge 
distillation, the student model effectively captures the essence 
of the LLM while reducing its size and complexity, resulting in 
a more lightweight TinyLM. 

 

Figure 3. Aggregation scheduler of DFL using SMPC. Each node shares partial models with the other nodes, each of which  
is encrypted using the recipient node’s public key for secure transmission, by uploading them onto the IPFS. Note that the partial 
model and the remaining model at each node when recombined constitute the original model. Each node now uses the partial 
models obtained from the other nodes and its own remaining model to recombine them. All these recombined models by the 
supervisor node, which is randomly chosen at each epoch, can now be securely averaged to get the averaged global model at the end 
of each aggregation phase. Since the partial models are securely shared with each node, the SMPC process allows averaging by 
distributing the data without revealing the model of any single node. 
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Quantisation for Model Pruning: The next step in generating 
TinyLM is quantisation, which reduces the model’s 
computational requirements even further. Quantisation 
converts the model’s high-precision weights to lower 
precision, such as 8-bit integers. This significantly reduces the 
model’s memory footprint and computational cost, making it 
more feasible to deploy on resource-constrained devices. 
Although quantisation may result in some loss of precision, 
the impact on performance is often minimal, ensuring that 
TinyLM can still provide contextually relevant responses for 
chatbot applications. 

Fine-tuning the LLM: The final step in creating a TinyLM is to 
fine-tune a pre-trained LLM on a domain-specific dataset. 

Fine-tuning the LLM allows the model to adapt to the target 
task by focussing on specific language patterns and contextual 
understanding relevant to the desired application [19]. This 
process helps tailor the LLM’s vast language knowledge to the 
specific use case, making it more suitable for the intended 
application. A TinyLM can be generated from an LLM by fine-
tuning, knowledge distillation, and quantisation. The TinyLM 
is tailored to a specific domain and pruned to a more 
computationally feasible size while retaining much of the 
language processing capabilities of its larger counterpart. This 
makes it well-suited for deployment in resource-constrained 
settings, enabling efficient and responsive chatbot interactions 
on a variety of devices with limited computational resources. 

 

2.3 User Interface 

To provide a seamless and interactive user experience within 
the decentralised chatbot ecosystem, we designed a user 
interface with four distinct modes of operation: Onboarding, 
Evaluation, Aggregation, and Exiting. These modes facilitate 
user engagement, incentivise active participation, and ensure 
timely model aggregation and updates (Figure 4).  

In the Onboarding stage, new users can join the decentralised 
chatbot network as participants or nodes. During this phase, 
users register their devices with a small fee, which contributes 
to the FL process. As new nodes onboard the network, they 
receive instructions for training their local models and 
contributing to collective learning.  

The Evaluation stage encourages users to actively participate 
in evaluating the pending model updates contributed by 
others. When a node submits its model update, it enters a 
validation queue for evaluation by other nodes. Nodes 
evaluate these updates based on performance metrics, model 
accuracy, and privacy compliance. Evaluators who provide 
valuable and accurate feedback receive incentives in the form 

of tokens or rewards. This incentivises nodes to actively 
contribute to the evaluation process, fostering a collaborative 
and transparent environment.  

The Aggregation stage is responsible for combining the 
validated model updates from different nodes using SMPC. 
To ensure timely aggregation, a random node is selected as 
the designated aggregator. If the chosen aggregator does 
not respond within a predefined time frame, the system 
automatically selects another node to perform the 
aggregation process. This dynamic selection mechanism 
helps maintain the efficiency and continuity of the model 
aggregation process.  

In the Exiting mode, nodes have the option to leave the 
decentralised chatbot network while preserving their privacy 
and data ownership. When a node decides to exit, its local 
model updates and data are securely deleted from its system. 
This ensures that participants can retain control over their data 
and contribute to the FL process as they see fit.  

By incorporating these four modes of operation in the user 
interface, the decentralised chatbot ecosystem encourages 

 

Figure 4. User interface. 
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active participation, rewards valuable contributions, and 
ensures seamless model aggregation. The user interface fosters 
a decentralised and democratic environment, where all 
participants play a crucial role in the collective improvement of 
the chatbot’s language capabilities while safeguarding their 
privacy and data ownership. 

3. Experimental Setup and Results 

In this section, we present the experimental setup and results 
conducted to evaluate the performance and effectiveness of 
the proposed blockchain-based DFL framework, along with 
the generation of the TinyLM through fine-tuning, distillation, 
and quantisation processes. We deployed the DFL framework 
on the Ethereum blockchain using smart contracts to facilitate 
secure and privacy-preserving FL. Note that the DFL 
framework is agnostic to the model itself, and the experiments 
are to only showcase the efficacy of our DFL implementation.  

We used the latest Falcon-7B LLM, which outperforms 
comparable open-source models (e.g., MPT-7B, StableLM, 
RedPajama, etc.) as witnessed on the OpenLLM leaderboard on 
the popular HuggingFace platform. It is a raw, pre-trained model, 
which should be further fine-tuned for most use cases. We chose 
the Open Orca-K16 dataset for our text summarisation task to 
fine-tune the LLM and the distilled model. The dataset contains 
pairs of input text and summary text. 

For the generation of the TinyLM, we first employed knowledge 
distillation techniques [20] using the pre-trained LLM as the 
teacher model and a smaller but similar architecture as the student 
model on the Open Orca-K16 dataset. The student model was 
trained to mimic the teacher’s behaviour by learning the value of 
its output logits, capturing its language understanding capabilities 
while reducing the model size significantly. Our code loads the 
test set, converts it into tokens, and then uses the ROUGE metric 
to evaluate the performance of the distilled model. The ROUGE 
precision score [21] (average of ROUGE-1, ROUGE-2, and 
ROUGEL scores) will provide an indication of how well the 
distilled model performs in comparison to the original teacher 
model. It is important to note that distilled models are typically 
expected to have slightly lower performance than their teacher 
models, but the student model is much faster and more efficient. 

Quantisation was then applied to the distilled TinyLM to 
further compress the model’s weights, achieving a more 
computationally feasible model without sacrificing 
performance (e.g., 8-bit integers instead of 32-bit floating-
point numbers). In this work, we used relevant low-precision 
optimisers [22] and QLoRA [19] to obtain the fine-tuned 
quantised student model. Finally, this TinyLM is deployed 
using the DFL framework to give a further boost to the text 
summarisation performance on the Open Orca-K16 dataset.  

3.1 DFL Evaluation Metrics 

The distilled and quantised student TinyLM fine-tuning 
happens directly using the DFL framework. The TinyLM  
 

currently exhibits baseline proficiency in text summarisation 
tasks and a compact footprint that permits execution on 
standard end-user devices, such as a personal PC with a 
Graphics processing unit (GPU). The initial global model for 
five separate DFL nodes is established using the deployed 
TinyLM. These nodes possess private data for training, 
achieved by dividing the training dataset into five distinct 
segments, with each segment assigned to a respective node. 
Subsequently, each of these five nodes proceeds to conduct 
fine-tuning operations using its private data and subsequently 
evaluate the model’s performance. The resulting fine-tuned 
private models are subjected to encrypted aggregation, 
facilitating the preservation of data privacy while also enabling 
parallel fine-tuning processes. This approach not only 
facilitates the utilisation of sensitive private data without 
compromising privacy but also harnesses individual 
computational resources to do the parallel training to expedite 
the model training process.  

We evaluated the performance of the DFL framework using 
two metrics, including global model accuracy and training 
efficiency. The accuracy of the global model was assessed 
across multiple rounds of DFL using an independent test 
dataset and ultimately contrasted with the performance of a 
standalone TinyLM. This standalone TinyLM was trained 
normally without any FL, denoted as ML in the experiments, 
on the complete training dataset. 

Secondly, as the DFL process splits the training burden across 
multiple nodes, it can potentially achieve faster convergence 
compared to a standalone ML model trained on the whole 
training dataset at a single machine. The DFL training efficiency 
was assessed by measuring the number of epochs needed to 
achieve the same performance using the TinyLM, with and 
without DFL, similar to the way the first metric is designed. 

3.2 DFL Results 

The size of the original Falcon-7b model was 14.43 GB, and the 
runtime GPU memory footprint was 26 GB. The size of the 
student model after knowledge distillation was just 700 MB, and 
the GPU memory footprint was 3.8 GB. After quantisation, the 
GPU memory footprint was further reduced to 3.0 GB. The final 
ROUGE scores of our TinyLM are: ROUGE-1-precision = 
88.15%; ROUGE2-precision = 86.56%; ROUGE-L-precision = 
88.06% using the first 20,000 samples from the Open Orca-K16 
dataset. It is important to mention that we utilise a distinct 
portion of the dataset for quantisation and distillation. This 
decision is made to avoid redundancy in subsequent DFL 
processes. In summary, regarding the generation of the TinyLM, 
the fine-tuning and knowledge distillation processes yielded a 
student model that closely resembled the performance of the 
LLM while significantly reducing model size. The quantisation 
process further pruned the model, achieving a computationally 
efficient TinyLM suitable for deployment on resource-
constrained devices. As mentioned earlier, the main contribution 
of the article is the DFL framework itself, and the model used is 
only for showcasing our successful implementation.  
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(a) Train/validation loss of the standalone ML model and DFL across the 
training rounds. 

 

(b) The standalone ML and DFL model ROUGE precision scores on the 
test dataset across the epochs. 

Figure 5. DFL results on the Open Orca-K16 dataset. 

In our DFL experiments, we first filtered the dataset for very 
long input tokens and used part of the filtered dataset for 
training and the other part for testing with a ratio of 5:1 (this 
data was not the same one used for generating the TinyLM). 
We utilised 200,000 samples from the dataset for training and 
40,000 samples for testing the standalone ML model and DFL. 
In our DFL experiments, we took a distribution of five nodes 
with an equal distribution of the training data. The ML training 
improved the ROUGE precision score of the TinyLM from 
85.08% to 88.36%, while the DFL finally improved to 87.91%. 
Figure 5 depicts a comparison of the test loss change as well as 
the ROUGE precision score change, respectively. The results 
highlight the comparable training impact between DFL and 
standalone ML, a key outcome of this study. This underscores 
the successful functionality of our DFL implementation.  

In addition to this, we also performed a comparison of the 
training efficiency of DFL and standalone ML. Under the premise 
of the same GPU (RTX A6000), each epoch of ML needs to 
process 200,000 samples, which takes about 55 minutes and 18.4 
seconds; while a single node of DFL needs to process only 40,000 
samples per epoch, which takes about 11 minutes and 9.3 seconds. 
Therefore, the time consumption is only 20.17% of that of ML, 
which is about the ratio of the total amount of data. Relevant to a 
real-world situation, since the GPUs used for DFL should 
theoretically have lower computational power than the GPUs 
used for ML, we arranged the DFL on a V100 GPU with lower 
computational power for the time computation. In this case, each 
epoch takes about 24 minutes and 30 seconds, which is only 
44.30% of the time consumption of ML. This shows that DLF is 
more efficient compared to machine learning (ML) while having 
similar training capabilities.  

The experimental results demonstrated the effectiveness of the 
DFL framework in collaboratively improving the language 
model. Through DFL, the chatbot’s language capabilities were 
refined iteratively, resulting in enhanced model accuracy and 
contextually relevant responses. The results of our 
experiments highlight the potential of the proposed DFL 
framework in creating privacy-preserving and efficient 
TinyLMs. By leveraging blockchain technology and 
decentralised learning, the chatbot ecosystem can ensure user 
data privacy and foster trust among participants. Additionally, 
the generation of TinyLMs offers a practical solution for 
deploying language models on devices with limited 
computational resources, enabling efficient and responsive 
chatbot interactions in real-world scenarios. 

4. Conclusion 

Our article introduces a novel approach to address critical privacy 
and efficiency concerns in chatbot applications by harnessing the 
power of blockchain-based DFL and the generation of TinyLMs. 
Through the incorporation of SMPC within the Ethereum 
blockchain, we establish a secure and collaborative learning 
environment that preserves individual data privacy and fosters 
trust among participants. Additionally, by applying fine-tuning, 
knowledge distillation, and quantisation techniques, we 
successfully generated TinyLMs, significantly reducing the model 
size without compromising language processing capabilities. Our 
experiments demonstrate the efficacy of the proposed DFL 
framework and TinyLM generation, exhibiting similar model 
accuracy with much higher computational efficiency compared to 
standalone machine learning and real-world practicality.  
The combination of decentralised learning and lightweight 
language models introduces new possibilities for efficient 
chatbot deployments on resource-constrained devices, offering 
privacy-preserving and responsive language interactions in diverse 
domains. By integrating SMPC and encryption methodologies, 
our research advances the development of secure, efficient, and 
user-centric language processing applications, promising a future 
of decentralised chatbot technology that safeguards user privacy 
and empowers individuals to take control of their data.  
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